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ABSTRACT

Existing cloud computing control planes do not scale to more than

a few hundred cores, while frameworks without control planes

scale but take seconds to reschedule a job. We propose an asyn-

chronous control plane for cloud computing systems, in which

a central controller can dynamically reschedule jobs but worker

nodes never block on communication with the controller. By decou-

pling control plane traffic from program control flow in this way,

an asynchronous control plane can scale to run millions of com-

putations per second while being able to reschedule computations

within milliseconds.

We show that an asynchronous control plane can match the

scalability and performance of TensorFlow andMPI-based programs

while rescheduling individual tasks in milliseconds. Scheduling

an individual task takes 1μs, such that a 1,152 core cluster can

schedule over 120 million tasks/second and this scales linearly with

the number of cores. The ability to schedule huge numbers of tasks

allows jobs to be divided into very large numbers of tiny tasks,

whose improved load balancing can speed up computations 2.1-

2.3×.
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Figure 1: The execution time for running one thousand 1ms

tasks on each core increases as the Nimbus controller drives

more cores, because the controller synchronously spawns

tasks on workers.

1 INTRODUCTION

Cloud frameworks make programming easier by taking care of

many of the complexities of distributed programming, such as

scheduling computations, load balancing, and recovering from fail-

ures. In this paper, we refer to the systems and protocols for these

services as a framework’s control plane.

A typical cloud framework control plane that uses a fully central-

ized design can dispatch fewer than 10,000 tasks per second [24, 32]:

jobs can either be big (thousands of cores) or fast (tasks take tens

of milliseconds) but not both [24, 37]. Furthermore, parallelizing a

job across more cores splits it into smaller pieces, reducing task du-

ration. This tradeoff introduces a fundamental limit on how much

these systems can parallelize a job. Increasing parallelization has

many benefits, including improved fault tolerance, load balancing,

and faster performance [17, 27, 29, 30, 43]. In practice, however,

increasing parallelism past even a few hundred cores quickly hits

the control plane’s scaling limit, making jobs run slower [24, 32].

A recent proposal to improve control plane scalability, taken

by Nimbus [24] and Drizzle [40], is to distribute the control plane

across worker nodes. Distributed control planes can handle an

order of magnitude higher load, scheduling up to 250,000 tasks per

second. This higher task rate allows them to run jobs on more cores,

running jobs 5-8 times faster. This improvement, however, is only a

constant factor and does not remove the fundamental limit. Figure 1

shows how this limit manifests: job completion time increases under

Nimbus as a job grows to run on more cores. Although the per-

worker CPU time remains fixed, at 1 second, completion time grows
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from 1.6 to 3.7 seconds as the control plane is unable to issue more

than 250,000 tasks/second.

A second approach is to remove the control plane entirely. Sys-

tems such as TensorFlow [6] and Naiad [26] use a dataflow model

that implicitly triggers computations when data arrives, while sys-

tems such as MPI [4] have programmers explicitly place data trans-

fer calls in their code. By imposing no control overhead, these

frameworks’ scalability is limited only by their applications as

with classical high-performance computing workloads. Rebalanc-

ing load or migrating tasks, however, requires effectively killing

and restarting a computation by generating a new execution plan

and installing it on every node. This takes tens of seconds, stalling

computations for hundreds of iterations and precluding interac-

tive jobs. A cluster manager, such as Borg [41], cannot allocate or

deallocate resources from jobs in these frameworks dynamically

as other jobs appear and complete. For example, if a high priority,

low-latency job arrives in a cluster, the cluster manager cannot pull

cores from existing jobs without stopping them for seconds.

Recent technology trends have made this tension between scala-

bility and flexibility increasingly acute. Increases in RAM allowed

analytics to transition from disk-based systems [2, 10] to in-memory

processing [26, 43]. Freed from slow I/O, the performance of appli-

cations in these frameworks can be CPU-bound [31], motivating

aggressive code optimizations [5, 33]. By executing tasks faster,

these improvements further increase the load on a control plane;

all of them report results from a single machine.

This paper proposes a new control plane design that breaks

the existing tradeoff between scalability and flexibility. It allows

jobs to run extremely short tasks (<1ms) on thousands of cores

and reschedule computations in milliseconds. The ability to run

short tasks on thousands of cores is valuable in computations that

iterate until they converge, such as machine learning and scientific

computing. Removing the control plane bottleneck allows these

computations to scale out while still supporting fault tolerance and

dynamic load balancing.

The key insight of the design is that the bottleneck in existing

control planes is due to synchronous operations between workers

and a controller. Existing control planes are tightly integrated with

the control flow of their programs, requiring nodes to block on

communication with a central controller node at certain points in

the program, such as spawning new tasks or resolving data depen-

dencies. As programs run faster and on more cores, the latency of

these synchronous operations increases, causing worker CPUs to

fall idle.

This paper proposes using an asynchronous control plane. With

an asynchronous control plane, a central controller tells worker

nodes how to redistribute work, but workers locally decide, between

themselves, when to redistribute. An asynchronous control plane

can reschedule jobs, adapt to changes in load, add workers, and

remove workers just as quickly and flexibly as a synchronous one.

But when a job is stably running on a fixed set of workers, an

asynchronous control plane exchanges only occasional heartbeat

messages to monitor worker status. The control plane’s traffic is

completely decoupled from the control flow of the program, so

running a program faster does not increase load at the controller.

Current synchronous control planes such as Spark execute 8,000

tasks per second; distributed ones such as Nimbus and Drizzle

can execute 250,000 tasks/second. Canary, a framework we have

designed with an asynchronous control plane, can execute over

100,000 tasks/second on each core, and this scales linearly with

the number of cores. Experimental results on 1,152 cores show it

schedules 120million tasks per second. Jobs using an asynchronous

control plane can run up to an order of magnitude faster than on

prior systems. At the same time, the ability to split computations

into huge numbers of tiny tasks with introducing substantial over-

head allows an asynchronous control plane to efficiently balance

load at runtime, achieving a 2-3× speedup over highly optimized

MPI codes.

This paper makes four research contributions:

• the concept of an asynchronous control plane, which has the

scheduling flexibility of a centralized controller yet scales as

well as a dataflow system;

• the program abstraction of task recipes, which allow worker

nodes to independently spawn and schedule their own tasks

as well as atomically migrate computations;

• the data abstraction of a partitionmap, which allows a central

controller to decide how to distribute computations while

maximizing data locality; and

• experimental evaluations of an asynchronous control plane

that show it can match the performance and scalability of

frameworks with no control plane, such as TensorFlow or

MPI, while simultaneously matching the runtime flexibility

of centralized controller designs, redistributing tasks within

a job 1,000 times faster than TensorFlow.

2 CLOUD FRAMEWORK CONTROL PLANES

A cloud framework control plane splits a job into dependent com-

putation units of tasks that can be scheduled to different nodes,

and assigns those tasks to resources allocated by a cluster manager.

Worker nodes that run on separate servers execute the tasks, while

one controller node coordinates those workers and communicates

with the cluster manager. Note that different jobs can run on the

same worker. The responsibility of the controller varies in differ-

ent control plane designs. For example, a Spark [43] controller is

involved in every task scheduling, while a MPI [4] controller only

launches processes on workers at the start of a job. Mesos [16]

and YARN [39] are two example cluster managers that use this

architecture.

Current cloud framework control planes do not scale to run jobs

with short tasks on many cores [24, 32, 37, 40]. The source of this

scalability bottleneck is their use of synchronous operations be-

tween the controller and workers as illustrated in Figure 2. That

is, at certain points during job execution, workers block on com-

munication with the controller, waiting for the controller’s control

messages, and falling idle if the controller fails to send those mes-

sages. As controller load goes up, the latency of the synchronous

operation increases, causing workers to block idle for longer peri-

ods. These synchronous operations are because the control plane

and the program control flow are tightly coupled. A control plane

obtains its control over a job by synchronizing with program con-

trol flow, injecting synchronous operations between the spawning

and assignment of tasks.
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(a) One synchronous operation launches one task (MapReduce,

Spark, Dryad, CIEL).

(b) One synchronous operation launches a block of tasks (Nim-

bus, Drizzle).

(c) One synchronous operation launches an entire job on each

worker (TensorFlow, Naiad, MPI).

(d) Centralized control is achieved throughmigrating data with-

out adding synchronous operations (Canary).

Figure 2: Synchronous operations in cloud framework control planes.

A centralized control plane, as used inMapReduce [10], Dryad [17],

Spark [43] and CIEL [27], requires one synchronous operation for

every task (Figure 2a). A central controller node spawns all tasks

in a job. A worker waits for the controller to send it new tasks,

executes new tasks when requested, and falls idle while it waits.

The effect of this synchronous operation is especially pronounced

during an application barrier, when every worker waits for the

controller to synchronously dispatch a new batch of tasks. This

centralization limits the number of tasks per second the system

can execute, as it is limited by the rate at which the controller

can send commands to workers. The Spark controller, for example,

dispatches fewer than 10,000 tasks per second [24, 32].

Ray [29] optimizes this centralized design by enabling a worker

to spawn and execute some tasks locally. If a task accesses data on

other workers, however, it must still perform synchronous opera-

tions with a controller.

Another approach to deal with this scalability bottleneck, used

by systems such as Nimbus [24] and Drizzle [40] is to distribute a

control plane across the workers and controller (Figure 2b). The

key insight in these systems is to dispatch large blocks of tasks

with a single synchronous operation. This reduces the number

of synchronous operations, allowing the systems to scale better,

but only by a constant factor. Workers still synchronously receive

computations from the controller and fall idle if the controller

cannot keep up.

TensorFlow [6], Naiad [26] and MPI [4] take this approach to its

extreme, dispatching the entire job to workers all at once with a

single synchronous operation that is required when the job starts

(Figure 2c). These systems impose no control plane overhead at

runtime, but are locked to a static execution distribution decided at

the start of a job. Redistributing job execution, if possible, requires

stopping all the nodes, regenerating the execution plans, reinstalling

them on the nodes, and restarting from a checkpoint. Any changes

in the task schedule (for the purpose of straggler mitigation or load

balancing) are either very expensive, or impossible.

A long history of systems research has shown that asynchro-

nous I/O, if managed carefully, can remove bottlenecks such as

these [9, 28, 42]. Applying this principle to a cloud computing con-

trol plane means that a central controller still controls where tasks

should execute, but these decisions may be applied asynchronously.

Furthermore, to ensure that workers do not fall idle, they indepen-

dently spawn their own tasks, asynchronously with respect to the

controller. Achieving an asynchronous design such as this requires

two mechanisms: a program representation that allows workers

to spawn computations without any central coordination, and a

scheduling mechanism in which workers can correctly execute

computations despite having potentially inconsistent views of how

computations are distributed.

2.1 Making the Control Plane Asynchronous

Applying the above principles, we argue that an asynchronous con-

trol plane places four requirements on its program representation

and scheduling model:

• Distributed scheduling: workers must spawn and execute

tasks locally, requiring no communication with a central

controller.

• Atomic migration: the output of a job must have each task

execute exactly once, despite mid-job migrations.

• Centralized control: a centralized controller must be able

to dynamically change how a job is distributed across work-

ers without introducing any synchronous operation.

• Maximized locality: a controller must be able to very effi-

ciently calculate data distributions, so that workers exchange

minimal data as they execute.

The key challenge in satisfying these four requirements is the

absence of synchronous operations. Without synchronous opera-

tions, the controller and workers cannot precisely know exactly

where in the program control flow another worker is. Despite this,

the control plane must be able to perform the above four functions.

3 ASYNCHRONOUS CONTROL PLANE
ARCHITECTURE

The proposed control plane requires no synchronous operations

between the controller and workers because they have cleanly

divided responsibilities: a controller decides where to execute tasks

and workers decide when to execute them.

On the worker side, an abstraction called task recipes, described

in Section 4, describes when to run a task by specifying a pat-

tern matched against the task’s input data. Using recipes, every

worker spawns and executes tasks by examining the state of its

local data objects. This requires no interaction with the controller.

Task recipes do not move or fetch data: they trigger based on what

data is present on the worker.
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(a) Tasks (circles), messages (grey rectangles), and partitions

(white rectangles) in the logistic regression iteration.

(b) Tasks recipes for the logistic regression loop. The recipes’

functions are omitted.

Figure 3: One iteration of the example logistic regression computation implemented with task recipes, (a) the execution flow

specified by task recipes for distributing the computations on two partitions, (b) the list of task recipes.

The controller, in turn, uses an abstraction called a partition

map, described in Section 5, to control where tasks execute. The

partition map describes which worker each data object should

reside on. This map is updated asynchronously to the workers, and

when a worker receives an update to the map it asynchronously

applies any necessary changes by transferring data. The controller

is responsible for ensuring that the partition map describes a data

distribution that ensures forward progress of a job, i.e. every task

is eventually spawned and executed. Because task recipes trigger

tasks based on what data objects are locally present, controlling the

placement of data objects allows the controller to implicitly decide

where tasks execute.

4 TASK RECIPES

Task recipes are a program representation that describes a set of

preconditions which, if met, trigger a function to run. However,

unlike dataflow programs, which explicitly assign each data object

to a specific worker node, task recipes are declarative statements

whose preconditions perform pattern match on data objects. Every

worker node has the identical set of task recipes: which recipes

trigger where, and on what objects, is determined by these pattern

matches.

Task recipes implement distributed scheduling, as workers can

spawn and execute tasks purely based on their local state. Ensuring

atomic migration, however, requires a careful design of how pre-

conditions are encoded as well as how data objects move between

workers. No node in an asynchronous control plane has a global

view of the execution state of a job, so workers manage atomic

migration among themselves. Two workers can be in very differ-

ent positions in the control flow of the program, yet must ensure

that data objects transferred between them neither miss nor repeat

computations: a worker who is ahead, must run older recipes on

objects it receives, while a worker who is behind must be sure not

to re-run its current recipes on objects it receives.

This section explains task recipes and the mechanisms by which

workers using recipes can atomically migrate computations. It uses

a logistic regression computation, shown in Figure 3, as a run-

ning example. The next section presents the partition map, the

mechanism by which an asynchronous control plane implements

centralized scheduling policies that maximize locality.

4.1 Execution Model

Task recipes assume an execution model typical to cloud frame-

works. A job is broken up into many stages. Each stage typically

represents a function (or series of functions) applied over one or

more variables representing large, distributed datasets. Datasets

are mutable and can be updated in place, avoiding the overhead

of copying on each write required by systems such as Spark [43].

Each dataset can be broken up into many partitions. The number

of partitions in a dataset defines the available degree of parallelism,

i.e. the number of individual computational tasks a stage can be

broken into. A driver program specifies a sequential program order,

but the runtime may reorder tasks as long as the observed result

is the same as the program order (just as how processors reorder

instructions).

In addition to this standard execution model, task recipes add an

additional mechanism: tasks can send and receive messages. Mes-

sages represent an intermediate result that is written by one task

and read by another: once a message is read, there is no need to

track it. A partition, in contrast, is shared data that can be read and

modified by many tasks. The placement of partitions determines

how tasks are assigned to workers, and its management by the

control plane implicitly schedules a job. Messages, on the other

hand, are dataflow between tasks and so implicitly define execution

ordering. Furthermore, this dataflow can be between tasks poten-

tially running on different workers, so can represent distributed

dependencies.
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4.2 Abstraction

A task recipe specifies three things:

• a function to run,

• which datasets the function reads and/or writes, and

• preconditions that must be met for the function to run.

Figure 3 shows an example of a logistic regression job and how

it is represented with task recipes. The job has three datasets: the

gradient G andweights W, which are not partitioned, and the training

data TD, which is partitioned into TD1 and TD2.

A key property of task recipes is that if a dataset has N partitions,

then a recipe accessing that dataset will trigger N times, once

for each partition. For example, the Compute recipe accesses the

training data TD, which has two partitions. This recipe therefore

triggers twice, as shown in Figure 3a, once on the worker holding

TD1 and once on the worker holding TD2. Task recipes enforce the

same partitioning as other frameworks, that all datasets that a stage

accesses must have the same number of partitions.

4.3 Preconditions

Datasets determine where a recipe triggers. Preconditions deter-

mine when it triggers. There are three types of preconditions:

• Last input writer: For each partition it reads or writes, the

recipe specifies which recipe should have last written it.

This enforces local write-read dependencies, so that a recipe

always sees the correct version of its inputs.

• Output readers: For each partition it writes, the recipe spec-

ifies which recipes should have read it since the last write.

This ensures that a partition is not overwritten until tasks

have finished reading the old data.

• Read messages: The recipe specifies how many messages

a recipe should read before it is ready to run. Unlike the

other two preconditions, which specify local dependencies

between tasks that run on the same worker, messages specify

remote dependencies between tasks that can run on different

workers.

Incorrect preconditions can lead to extremely hard to debug

computational errors, so they are generated automatically from a

sequential user program. We defer code examples to Section 6, but

Figure 3 shows a block diagram of a logistic regression computation

and the corresponding recipes with their preconditions.

A single recipe describes potentially many iterations of the same

data-parallel computation. The loop shown in Figure 3a, for exam-

ple, executes many times. Because the recipes in Figure 3b refer

to prior executions of the loop, they cannot be used for the first

iteration. There are therefore a parallel set of recipes (not shown)

for the first iteration of a loop, with slightly different preconditions.

For example, the Broadcast recipe expects W to be written by stage

5N, which is the preceding input stage shown in Figure 7.

Writers and readers are specified by their stage number, a global

counter that every worker maintains. The counter counts the stages

in their program order, and increments after the application deter-

mines which branch to take or whether to continue another loop.

All workers follow an identical control flow, and so have a consis-

tent mapping of stage numbers to recipes. For cases when recipes

should only perform operations on some workers (e.g., some parti-

tions are empty), those recipes can be skipped but are still entered

in the execution history. This approach is similar to how GPUs

share instruct fetches across thousands of parallel threads while

handling dynamic branches, by having every thread issue every

instruction but some threads make them no-ops. Because spawning

a task only takes a few microseconds, the cost of these no-ops is

negligible.

Correctly formulating recipes requires whole-program analysis,

e.g., for stage identifiers. Correspondingly, they do not easily sup-

port interactive usage, such as running ad hoc queries on datasets

or changing application logic during execution.

4.4 Exactly-once Execution and Asynchrony

When a data partition moves from one worker to another, they must

exchange sufficient information to ensure that the task from a given

stage executes exactly once and messages are delivered correctly.

For example, suppose that the worker holding the gradient G in

Figure 3 is running slowly, and so G is moved to another worker

after it has received G1 and G2 but before Reduce has run. These

messages must be re-routed to the new holder of G so it can trigger

the Reduce recipe. However, if G is moved after Reduce has run,

then the messages should not be re-routed and Reduce should not

run again.

To ensure that tasks execute exactly once, when workers transfer

a data partition they include the access history metadata relevant

to preconditions, the last writer and how many recipes have read

it. The last writer ensures both that a modifying recipe does not

re-execute and that it is not missed, since other recipes cannot

yet trigger. This approach depends on the stage number being

consistent across all workers, so they can precisely specify stages

across the entire cluster.

When a worker is notified that it should migrate a partition, it

must first wait for all currently executing tasks that access the par-

tition to complete, so that its last writer and number of readers are

in a consistent state. It marks the partition as busy, so that no new

recipes are triggered from it. Then, when all outstanding tasks com-

plete, it begins the transfer. It can delay setting the busy flag, to defer

transmission, but generally will transfer at the first opportunity.

The asynchrony between control plane commands to migrate data

and the actual migration allows workers to distributedly schedule

tasks without ever blocking on a central controller.

Exactly-once execution also depends on the correct delivery of

messages. We defer a discussion of this mechanism to Section 5.4,

which describes the control plane.

5 PARTITION MAP

A partition map describes how a job should be distributed across

workers, and is used as the mechanism for the controller to signal

workers how to reschedule job execution. This section defines a par-

tition map (Section 5.1), describes the control interface between the

controller and workers (Section 5.2), discusses how a partition map

relates to data locality (Section 5.3) message delivery (Section 5.4),

and illustrates how to use a partition map to express scheduling

algorithms (Section 5.5).
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Figure 4: The control interface between the controller and

workers. First, the controller updates its partition map. Sec-

ond, the controller pushes the updates to workers. Third,

workers coordinate among themselves tomigrate partitions

and computations. Finally, formonitoring purpose, workers

notify the controller that partition migration is completed.

5.1 Definition

A partition map is a table that specifies, for each partition, which

worker stores that partition in memory. A partition is named by

a (name, index) tuple. name is the partition’s dataset name in the

driver program; index is an integer ranging from 1 to n, where n is

the number of partitions in the dataset.

5.2 Controller-worker Interface

The controller-worker interface is built on top of a partition map,

which is decided by the controller and asynchronously applied by

workers. The controller does five things:

(1) Starts a job by installing the job’s driver program and an

initial partition map on workers.

(2) Periodically exchanges heartbeat messages with workers

and collects workers’ execution statistics, e.g. a worker’s

CPU utilization and CPU cycles spent computing on each

partition.

(3) Uses the collected statistics to compute partition map up-

dates during job execution.

(4) Pushes partition map updates to all workers.

(5) Periodically checkpoints jobs for failure recovery.

A worker constructs a partition in memory if the initial partition

map assigns the partition to it. During job execution, every worker

receives every partitionmap update, and asynchronously transfers a

local partition if the updates indicate the partition has been assigned

to another worker.

Figure 4 gives an example. The controller updates the partition

map to migrate partition (TD, 2) from worker N1 to worker N2. N1

receives the update, and starts to transfer the partition. N2 reports

to the controller, once receiving the partition.

A worker maintains a local partition map copy by replaying the

partitionmap updates received from the controller, which is used for

message delivery. A design choice is the consistency model of those

copies. It would require synchronous operations to ensure every

worker’s copy is always the same. So the controller guarantees every

Figure 5: Partition map constraints are computed based on

which datasets each stage accesses. For example, for each in-

dex i, partitions (2, i), (3, i), and (5, i) are assigned to the same

worker. Here, a solid line denotes that a stage reads or writes

a dataset, and dashed circles show the constraints.

worker receives all updates in the same order but not necessarily at

the same time. Consequently the partition map copy on a particular

worker can be stale. The controller attaches an increasing version

number to each update, so that workers can tell which worker’s

partition map copy is more stale.

5.3 Maximize Data Locality

There are two requirements to ensure that the data distribution

given by a partition map maximizes data locality. First, every par-

tition should have a single physical copy. Otherwise, every write

to a partition needs to be synchronized to all its copies, causing

poor data locality. Second, the case when the input partitions to the

same task are distributed on multiple workers should be eliminated,

because executing the task requires at least one of the partitions be

migrated.

The controller satisfies the second requirement by always updat-

ing a partition map under the constraints that the input partitions

to each possible task in a job are assigned to the same worker.

The execution model of task recipes is intentionally designed to

make the constraints explicit and achievable: if a stage reads or

writes multiple datasets, a task in the stage only reads or writes the

datasets’ partitions that have the same index, so those partitions

are constrained to be assigned to the same worker.

Figure 5 gives an example job with four stages and five datasets.

Stage W only accesses Dataset 1, and runs independent tasks on

each partition of Dataset 1. So Stage W imposes no constraints on

the partition map. Stage X accesses both Dataset 2 and Dataset 3,

so partition (2, j ) and partition (3, j ) will be input to the jth task of

Stage X and should be assigned to the same worker.

The controller computes the constraints by analyzing the dataset

access of all stages written in the driver program. The analysis

divides datasets into sets, by putting two datasets into the same

set if any stage takes both datasets as input, and concludes that

partitions should be assigned to the same worker when they have

the same partition index, and their datasets end up in the same set.

5.4 Message Delivery

A strawman solution for message delivery is that a worker decides

where to send a message by looking up which worker stores an
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(a) A worker holds a message if the message has a newer version

number than the receiver.

(b) A worker forwards a message if the receiver has a newer version

number than themessage. When forwarding amessage, the worker

rewrites the version number in the message.

Figure 6: Workers ensures correct message delivery when

not all partitionmap copies onworkers are up-to-date. TD1 is

a dataset partition. When some worker has a stale partition

map copy (i.e. N2 in Figure (a) and N3 in Figure (b)), workers

use the version number of partition map updates to decide

whether to hold or forward received messages.

input partition of the receiving task. While a program sends a

message to a task, the system translates the destination to be one of

the receiving task’s input partitions. The constraints of a partition

map mean the input partitions to a particular task are always stored

on the same worker, so every input partition is equivalent.

This strawman solution can deliver a message to the wrong

worker, if the lookup used a stale partition map copy. Figure 6 il-

lustrates how to ensure correct message delivery using the version

number of partition map updates. When a worker sends a message,

it includes the version number of the latest partition map update it

receives in the message. If a worker receives a message that has a

newer version than the version number the worker has, it holds the

message. If the message has an older version, the receiver forwards

the message to the correct destination. This simple algorithm en-

sures that the message will eventually arrive at the worker that

holds the destination partition. Another corner case is that after

a worker receives a message, later partition map updates may in-

dicate the message should be sent to another worker. So a worker

buffers messages it receives, and checks whether buffered messages

should be sent again whenever receiving a partition map update.

Lost messages are detected by per-hop acknowledgements. If

an acknowledgement is not received within a time period, this is

interpreted as a worker failure. Because datasets are in-memory

andmutable, there is no replica and a job cannot proceed if a worker

fails. A worker detecting a failure informs the controller, which

restarts the application from the last checkpoint.

5.5 Expressing Scheduling Algorithms

This subsection illustrates how to express scheduling algorithms

using the partition map as the mechanism. The controller runs a

Updates computePartitionMapUpdates(

WorkerTable worker_table ,

PartitionTable partition_table ,

Set <WorkerId > dying_workers);

Listing 1: The signature of a scheduling function that

generates partition map updates. It takes three inputs: a

worker table that describes each worker’s resource usage,

a partition table that specifies which worker stores each

partition and whether the partition is being migrated, and

a set of workers that are being shut down by the cluster

manager.

Updates updates;

if (! haveStragglerWorker(worker_table))

return updates;

WorkerId straggler =

findStragglerWorker(worker_table);

PartitionEntry entry = selectOnePartition(

worker_table[straggler ]. partitions);

worker = getMostIdleWorker(worker_table);

updates.add(entry.dataset_id ,

entry.partition_index ,

worker);

return updates;

Listing 2: A scheduling function that migrates one partition

on a straggler worker to the most idle worker.

Updates updates;

WorkerId worker = getFirstWorker(worker_table);

for (entry in partition_table)

if (!entry.in_migration &&

entry.worker_id in dying_workers) {

updates.add(entry.dataset_id ,

entry.partition_index ,

worker);

worker = getNextWorker(worker_table , worker);

}

return updates;

Listing 3: A scheduling function that migrates partitions

from dying_workers to other workers in round robin.

scheduling function to generate partition map updates that describe

how to reschedule job execution. Listing 1 gives the scheduling

function signature. Common scheduling functions, e.g. for strag-

gler mitigation and dynamic worker membership, are given by the

framework, but a user can associate customized scheduling func-

tions to a job. A scheduling function is optionally invoked before a

job starts (to generate the initial partition map), after a worker is

added, before a worker is removed, at a fixed time interval or when

requested by a user.

Listing 2 gives a scheduling function for straggler mitigation.

It calls findStragglerWorker to determine a straggler worker,

which could be implemented in many ways, e.g. if the worker’s

CPU utilization is much higher than average, or if the background

processes on the worker are using significant CPU cycles. Note that
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Figure 7: The sequential program for the example logistic

regression computation, which is constructed by the driver

program (omitted). The computation loops until the Again

stage computes False. Every rectangle is a data-parallel com-

putation, i.e. a stage. Inside the rectangle is the stage’s func-

tion, which retrieves a partition by calling GetPartition,

gets the partition index by calling PartitionIndex, and op-

tionally passes messages to tasks in the next stage.

the controller follows the constraints that certain partitions must

be assigned to the same worker. Updating one partition to be on a

new worker migrates the other partitions as well.

Listing 3 shows how to remove workers from a job. After a

cluster manager instructs the controller to shut down workers,

those dying workers are passed to the scheduling function. The

controller will not shut down the dying workers until all partitions

on those workers have been migrated away. Note that when the

partition table indicates a partition is in_migration, updating the

partition to be on another worker has no effect.

6 IMPLEMENTATION

We implement recipes and the asynchronous control plane in an

in-memory cloud framework called Canary. This section describes

Canary’s programming abstraction and how Canary achieves fault

tolerance.

6.1 Programming Abstraction

Writing recipes and their preconditions manually is tedious and

error-prone. Instead, Canary asks a user to write a driver program

that constructs another sequential program of data-parallel com-

putations (i.e. stages) with optional loops or branches, and then

translates the sequential program to recipes. Figure 7 shows the se-

quential program for the example logistic regression computation,

which is constructed by the user’s driver program. The remaining

text describes features of the programming abstraction.

Data-dependent control flow. The loop in Figure 7 is iteratively

executed until the Again stage computes False. The Again stage

should have one task and compute one boolean value, so that there

is a unique boolean decision for each iteration. The driver program

checks this when constructing the Again stage, by ensuring every

dataset the stage reads or writes has only one partition.

Distributed driver programexecution. Before a job starts, every

worker receives a driver program copy from the controller, and

independently runs the copy to construct the sequential program of

stages and translate it to recipes. The driver program is not running

during job execution, so it must describe all computations before the

job starts. In contrast, a centralized driver program as in Spark, CIEL

and Ray causes centralized performance bottleneck. The benefit

of a centralized driver program is that it can run arbitrary user

codes during job execution to decide what stages to execute, and

is more flexible for describing highly irregular computations as in

reinforcement learning.

Weak data model. Canary makes minimal assumption of what is

stored in a dataset. A dataset partition can store any C++ object

that can be serialized, and the class type of the object is chosen by

the user. The weak data model enables working on geometric data

and reusing existing data structures, which is handy for scientific

computing applications.

Message passing. Canary’s data model does not specify what op-

erations a dataset provides, so a driver program has to specify,

e.g. how to repartition a dataset into another using a partitioning

function, or how to reduce multiple writes to a dataset partition.

To this end, Canary supports passing messages between tasks

for implementing repartitioning, reduction and broadcasting. Con-

current writes to the same dataset partition are modeled as passing

multiple messages (representing the writes) to a task, and the task

decides how to reduce the messages and write to the partition. In

Figure 7, every task in the Compute stage generates a local gradient

(Gi). Instead of writing the local gradients to partition G, the task

passes Gi as a message. The Reduce task receives all Gi messages,

sums them up, and writes it to partition G. The reduction logic is

highly reusable and is implemented as an application library. For

simplicity, a stage’s function only sends messages to tasks in the

next stage and the receiving task is identified by the index of its

input partitions. The receiving task’s function calls Recv to retrieve

messages in a vector ordered by the indices of the sending tasks.

6.2 Fault Tolerance

Canary periodically checkpoints all the partitions of a job. The

controller monitors whether workers fail using periodic heartbeat

messages. If any worker running a job is down, the controller cleans

up the job’s execution on all workers, and reruns the job from the

last checkpoint. To build a checkpoint, the controller first pauses

all workers which report back the furthest stage the worker has

run, then instructs all workers to complete all stages before that

stage, and finally asks workers to store all partitions in the job

to a persistent storage. This forms a consistent checkpoint at the

barrier stage. The barrier stage introduces additional idle time, but

simplifies debugging because only tasks before the barrier stage

have executed.

Checkpoint-based failure recovery rewinds the execution on

every worker back to the last checkpoint when a failure happens,

while lineage-based failure recovery as in Spark only needs to

recompute lost partitions. But the cost of lineage-based failure
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Figure 8: Iterations per second of a logistic regression com-

putation over 100GB of data as it is parallelized acrossmore

cores in Spark, Nimbus, TensorFlow and Canary. On 1,024

cores, every task takes 2.6ms. Canary and TensorFlow scale

almost linearly,whileNimbus and Spark bottleneck at their

controllers.
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Figure 9: How many 1-millisecond tasks Spark, Nimbus,

TensorFlow and Canary can run as the number of cores

increases. Both Spark and Nimbus bottleneck at their con-

troller, while TensorFlow’s and Canary’s continue to scale

up to 1,024 cores.

recovery in CPU-intensive jobs outweighs the benefit, because it

requires every partition to be copied before modifying it.

7 EVALUATION

We evaluate the benefits of an asynchronous control plane by an-

swering four questions:

(1) Can an asynchronous control plane scale to parallelize com-

putations as highly as dataflow systems that have no control

plane?

(2) What limits the maximum task rate an asynchronous control

plane can support?

(3) Can the ability to run large numbers of tiny tasks reduce job

completion time?

(4) Can an asynchronous control plane reschedule tasks as quickly

as a synchronous one?

To answer these questions, we implemented an asynchronous

control plane in Canary, an in-memory cloud framework written in

C++. We compare Canary with a full sample of the existing design

points in cloud frameworks. Spark release 2.0 is an example of a

centralized control plane, Nimbus is an example of a distributed

control plane, and Open MPI release 1.10 as well as TensorFlow

release 1.0 are examples of no control plane.

In most experiments, both the controller and workers use Ama-

zon EC2 [1] c4.4xlarge instance, a server configuration optimized

for compute-intensiveworkloads. The instance has an Intel Xeon E5-

2666 processor with 8 cores and 30GB of memory, with 10GbE links.

The scientific computing applications use the larger c4.8xlarge

instances for each worker, which has 18 cores and 60GB of memory.

In summary, we find that:

• Canary scales as well as TensorFlow, linearly scaling its

performance in experiments using up to 1,024 cores. Cost

considerations prevented us from evaluating at larger scales.

Canary can also match the performance of MPI implementa-

tions of three data analytics benchmarks.

• The task rate is limited by the CPU cycles on each worker.

Scheduling a task takes approximately 1μs. Capping the

scheduling overhead at 10%, an individual core can scale to

100,000 tasks/second. This rate scales linearly with the num-

ber of cores: 1,152 cores can schedule 120 million tasks/sec-

ond.

• The ability to split a job into many tasks per core allows

Canary to easily balance non-uniform load. This allows Ca-

nary to run several scientific computing benchmarks 2.1-2.3×
faster than MPI.

• An asynchronous control plane can reschedule a job in mil-

liseconds, on par with a synchronous one and three orders of

magnitude faster than TensorFlow, which has to recompile

and reinstall the dataflows on all workers.

7.1 Control Plane Scalability

We evaluate the scalability of an asynchronous control plane, com-

paring it with the existing design points of Spark, Nimbus, and

TensorFlow. The scalability of cloud framework jobs depends not

only on the control plane but also CPU efficiency [25]: if the frame-

work generates very slow code, then cores can execute few tasks

per second and the control plane does not become the bottleneck.

To isolate differences in generated code performance from the per-

formance of their control planes, we use the same methodology as

prior work, measuring the task duration of each framework and

then replacing application tasks with spin loops that run for the

same duration as the fastest framework.

To evaluate the performance effect an asynchronous control

plane has on end-to-end application performance, we compare the

performance of three data analytics benchmarks implemented in

Canary and in MPI. As MPI has no control plane and uses highly

optimized C code, it represents the best-case performance for these

benchmarks.

7.1.1 Strong Scaling. Figure 8 shows the application perfor-

mance of a fixed size logistic regression job as it is parallelized

across more cores, measured in iterations per second. This experi-

ment evaluates the strong scaling of Spark, Nimbus, TensorFlow,
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(a) Logistic regression.
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(b) K-means clustering.

256 512 768 1024

# of cores

0.0

0.5

1.0

1.5

It
e
ra

ti
o
n

 t
im

e
(s

)

0
.8

7
0

.8
6

0
.5

1
0

.5
1

0
.3

4
0

.3
4

0
.2

6
0

.2
6

MPI
Canary

(c) PageRank.

Figure 10: Iteration times of parallelizing three data analytics benchmarks on 256-1024 cores in MPI and Canary. Canary

matches the performance of MPI. The error bars show the minimum and maximum across 3 runs with 100 iterations per run.

A node has 8 cores.

and Canary. The job processes 100GB of data, which is split into 10

partitions per core.

Performance for both Canary and TensorFlow scales linearly up

to 1,024 cores. Nimbus cannot scale much beyond 512 cores, which

causes it to be 50% slower than Canary and TensorFlow on 1,024

cores. Spark’s performance cannot scale much beyond 256 cores,

and at 512 cores it begins to decline, which aligns with the results

reported by Nimbus [24]: TensorFlow and Canary execute over 6

times faster.

7.1.2 Weak Scaling. To determine whether the scalability re-

sults in Figure 8 are due to the control plane or other application

aspects of these frameworks, we measured control plane perfor-

mance with a weak scaling test. In this experiment, every task runs

for 1 millisecond. We measure how many tasks a framework can

execute per second by scaling the number of cores. Ideally, each

core can execute 1,000 tasks per second, and the overall task rate

should be 1,000 tasks/sec·cores.
Figure 9 plots the task rate of each framework as the number

of cores increases. Canary and TensorFlow scale linearly. Canary

and TensorFlow are able to achieve 80% of the ideal performance,

executing 800 tasks/second per core. This 20% performance loss

is due to application-level communication in the logistic regres-

sion job (reducing the gradient and broadcasting the weights). The

synchronous control plane communication in Spark and Nimbus

limit them to 8,000 and 250,000 tasks/second, while Canary and

TensorFlow easily scale up to 750,000 tasks/second.

7.1.3 End-to-end Application Performance. Because it places all

functionality in the control of a programmer, carefully optimized

and designed MPI code represents the best-case performance for

distributed computing. To evaluate the performance of applications

written in Canary, we compare three data analytics benchmarks

written in Canary with their MPI counterparts. Both use the same

C++ task implementations. The MPI implementations use MPI’s

optimized communication libraries for reduction and broadcasts,

using asynchronous communication primitives (e.g. MPI_Isend,

MPI_Irecv) wherever possible.

We use three data analytics benchmarks: logistic regression, k-

means clustering and PageRank. Logistic regression is shown in

Figure 3. K-means clustering has a higher computation density than

logistic regression. PageRank uses a standard vertex-cut algorithm.
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Figure 11: The task rate of Canary grows linearly with the

number of cores, reaching more than 120 million tasks per

second on 1,152 cores, because every core spawns and exe-

cutes tasks in parallel.

The input data sizes of the benchmarks are chosen to fill the RAM of

8 nodes: 240GB of training data in logistic regression and K-means

clustering and a 1.6 million edge sparse graph for PageRank.

Figure 10 compares the iteration times of running the bench-

marks on Canary and MPI with 256-1024 cores. Canary matches

the performance of MPI, and imposes negligible overhead when

running the jobs. Note that MPI executes hand-written codes rather

than tasks. It is possible for Canary to match its performance, be-

cause the overhead of analyzing the tasks’ dependency only consists

of fast local CPU computation without any inter-node communica-

tion or central coordination.

7.1.4 What is the Limit? To explore the scalability limit of the

asynchronous control plane, we measure how fast Canary executes

independent empty tasks. We cap the fraction of CPU time that can

be spent on scheduling to 10%; in this setting, applications would

still receive 90% of the CPU cycles. Figure 11 shows the results. Each

individual task takes 1μs to schedule. Using 10% of CPU cycles, each

worker core can execute 100,000 tasks/second. Since scheduling

requires no inter-node communication, this scales linearly with the

number of cores. Running on 1,152 cores, Canary can execute more

than 120 million tasks per second.
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Iteration time MPI Canary Speedup

PARSEC 4.18s 1.82s 2.30×
Lassen 1.05s 0.49s 2.14×

Table 1: Canary runs two scientific computing applications

2.1-2.3× faster than MPI on 32 workers and 576 cores by

using fine-grained tasks to balance load between cores. By

splitting partitions 4 times finer, Canary accelerates the ap-

plications by offloading computation frombusy cores to idle

ones on the same worker.

7.2 Benefits of Tiny Tasks

We evaluate whether the ability to split a job into tiny tasks can

improve application performance and examine two complex scien-

tific computing applications. Unlike the data analytics benchmarks,

these scientific computing applications have imbalanced computa-

tion load on different partitions, so splitting tasks finer improves

load balancing between cores. Note that MPI’s process-based ex-

ecution model performs poorly when there are more processes

than cores, and so cannot subdivide jobs finer than the number of

cores. OpenMP-MPI hybrid [35] might achieve similar speedup but

requires manually parallelizing computations.

The fluidanimate benchmark in PARSEC [7] is a particle sim-

ulation, which simulates 600 million particles in a Cartesian grid of

1100 × 380 × 1100. It has 4 stages per iteration. Lassen [3] tracks a

wave moving on an unstructured mesh of 5 billion cells, and has 7

stages per iteration. When porting these applications to Canary, we

reuse their existing data structures, but have to break execution into

stages, and rewrite the communication logic. These experiments

use c4.8xlarge instances with 18 cores per node, because a larger

instance helps balance load between cores. We choose the input

data sizes so that up to 80% worker memory is used for each worker.

As shown in Table 1, splitting tasks four times finer enables

Canary to reduce PARSEC’s iteration time by 2.30× and Lassen’s

iteration time by 2.14×. The speedup is due to higher CPU utiliza-

tion rather than faster computation because both MPI and Canary

execute the same computation codes. In the experiment, load bal-

ancing happens between cores on the same node, so no inter-node

communication is needed.

7.3 Rescheduling Job Execution

We measure how fast Canary reschedules job execution to miti-

gate stragglers and dynamically use more or fewer nodes, using

TensorFlow as a reference.

Straggler mitigation. Figure 12 shows the first use case of strag-

gler mitigation. We manually introduce a straggler node by launch-

ing one computation-intensive thread on each of its cores, which

will slow down execution by roughly 50%. A Canary controller

detects a straggler node if the node’s background processes use

significant CPU cycles, and then migrates partitions away from

the worker and evenly distributes the partitions to other work-

ers. TensorFlow cannot automatically mitigate stragglers, and its

rescheduling is achieved by manually configuring it to rerun the

job without using the straggler node. This experiment assumes
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Figure 13: The latency for TensorFlow to compute and in-

stall dataflows on workers increases with the number of

nodes. TensorFlow incurs this time cost to reschedule a sin-

gle task.

partitions are replicated on workers, which is a common storage

policy in the cloud, so the partition data on the straggler worker

does not need to be transferred.

As shown in Figure 12, a straggler node increases the iteration

time from 0.66s to 1.19s. After the straggler node is removed from

the job, the iteration time drops to 0.73s. However, TensorFlow

takes 5.6s to complete the rescheduling. As a larger cluster is used

and stragglers happen more often, TensorFlow will lag behind.

Canary’s rescheduling overhead. We further investigate Ca-

nary’s overhead during the rescheduling by measuring how long

Canary takes to migrate empty partitions between workers. When

there are 128 workers and 8 partitions per worker, Canary takes

0.94ms to migrate one empty partition, and 2.60ms to migrate all 8

partitions of a worker to other workers. Since partitions store no

data, the reported time mainly consists of two parts: (1) transmit-

ting partition map updates from the controller to workers, and (2)

exchanging the metadata of what recipes have read or modified the

migrated partitions between workers.

TensorFlow’s rescheduling overhead.We report howmuch time

TensorFlow takes to compute and install dataflows on workers as

shown in Figure 13. This is the time cost for TensorFlow to redis-

tribute even a single task. The tested job places 8 partitions (i.e.

tensors) on each node and has a global variable. It multiplies the

variable with each tensor, sums up the results, and uses the sum to
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Figure 14: Canary dynamically redistributes the execution

of a k-means clustering job that processes 240GB data on 32

workers or 64 workers. The spike of iteration times is due to

sending application data over the network.

update the variable. Regardless of the simple computation pattern,

it takes 0.93s to compute the dataflows for 16 workers, and 0.58s to

install the dataflows on those workers. The computation and instal-

lation time increases linearly with the number of workers. Note the

job uses in-graph replication instead of between-graph replication,

because the latter only works for a limited set of applications such

as distributed machine learning based on a parameter server [21].

Using more or fewer nodes. Figure 14 shows how Canary re-

distributes job execution to dynamically use more or fewer nodes

i.e. the number of worker nodes available to a k-means clustering

job changes over time. The job initially runs on 32 workers, and

takes 1.2s per iteration. Then, 32 workers are added to Canary’s

allocation. As a result, half training data of 120GB are shipped to

added workers in 15 seconds. Computation continues during the

rescheduling, so both the iteration during the rescheduling and

the next iteration are slower. After the rescheduling, the job runs

twice as fast. A reverse procedure happens when the cluster size is

reduced. Another command is issued to the controller to condense

data back to 32 workers, after which the controller shuts down

removed workers.

8 RELATEDWORK

Distributed resource scheduling. Distributed scheduling sys-

tems [8, 11, 19, 32] solve the problem of allocating resources to

tasks in parallel, and their design enables multiples nodes to decide

the best resources for tasks without tight coupling. However, they

do not deal with the dependencies of tasks in a job, since only a

cloud framework knows how tasks exchange data and depend on

each other. Therefore, those resource scheduling systems assume

tasks in a job are always scheduled by the same node, but this paper

suggests the task execution rate within a job can be too high for a

single node to handle.

Graph processing frameworks. First, many graph processing

frameworks (Pregel [23], GPS [36], and Mizan [20]) use the Bulk

Synchronous Parallel (BSP) model [38], and rely on global barri-

ers to ensure correct execution, and that is highly inefficient for

scheduling dependent tasks that frequently exchange data.

Second, graph processing frameworks can avoid global barriers

by introducing the asynchronous execution model, which allows

vertices to run different numbers of supersteps without tight syn-

chronization. For example, GraphLab [22] and PowerGraph [14]

achieve this by allowing a vertex to pull data from others, and use

distributed locking to resolve conflicted data access. Giraph Un-

chained [15] achieves this with a push-based model, and replaces

global barriers by local barriers. Asynchronous execution accel-

erates graph algorithms, but does not generally work for other

application domains.

Third, graph processing frameworks often rely on static graph

partitioning algorithms to balance load, i.e. they assign computation

to nodes statically. Mizan [20] migrates vertices between nodes

during global barrier phases in BSP. In the asynchronous execution

model, it is still unclear how to implement dynamic load balancing.

HPC frameworks. High performance computing frameworks

can handle fine-grained computations efficiently, but their solutions

involve manual effort to deal with correct execution, and only

work when running on a fixed set of nodes offering uniform and

stable performance. For example, MPI [4] runs the same program

on distributed processes, coordinating execution through message

passing. MPI scales well as there is no global state or central control,

instead the heroic application developer has to implement all logic

beyond communication channels. Charm++ [18] models an job as

distributed objects that can trigger events that are executed on each

other. A user has to reason about the event triggering order so as

to guarantee correct execution.

Programming abstractions. Guarded command language de-

scribes non-deterministic programs by associating a predicate with

each statement about when the statement can run. [12] Stateful

dataflow graphs are an imperative abstraction where a task can

access partitions and exchange messages. [13] The distributed mem-

ory model in Piccolo allows tasks to modify partitions in place;

task can modify any partition, and concurrent writes are resolved

through accumulative operations. [34] Canary’s programming ab-

straction borrows ideas from each of these prior programming

models, adapting them to implement a control plane for distributed

task scheduling.

9 CONCLUSION

This paper demonstrates that a cloud computing framework can

run tiny tasks as short as milliseconds on hundreds of cores, and

at the same time reschedule job execution in milliseconds. The

key insight is to remove the synchronous operations in the control

plane, so adding runtime control capability to a cloud framework

imposes negligible overhead. Implementing an asynchronous con-

trol plane requires significant changes to existing cloud framework

design. First, a program abstraction, called task recipes, avoids a

central program control flow, so that workers spawn and execute

tasks without any interaction with the controller. Second, using a

partition map as the scheduling mechanism, a controller retains

centralized scheduling while workers can asynchronously apply

the controller’s scheduling decisions.
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