

Predicting x86 Program Runtime for Intel Processor
Behram Mistree, Hamidreza Hakim Javadi, Omid Mashayekhi

bmistree, hrhakim, omidm@stanford.edu

Introduction
In this Project we try to predict the runtime
for Intel processor x86 loop free programs.

As a reference, we use a tool called IACA
provided by Intel that given a set of loop free
instructions would return back the number of
cycles it takes to run them over the processor.
In fact this black box resembles the internal
structure of an Intel processor and takes into
account the effects of parallelism and
pipelining.

Our goal is to simulate the behaviour of this
black box with machine learning techniques.

● Linear Regression

Fixed Length Programs
● Naive Generative Model

Variable Length Programs

● Generative Model

Feature Collection
We need to capture the read/write conflicts
between the instructions. This way we can
capture whether instructions can run in
parallel or not.

Simply for each program add the
number of cycles it takes to run
each instruction independently.
Since we are not considering any
possible parallelism the prediction
is far from reality

Collect the features as explained
for each instruction for programs
with length L, and learn number of
cycles it takes to run the program
from the aggregate feature vector
containing all the features from all
the instructions.

γpre = (XTX + λI)-1XTY

program 1 :
movl $0x40, %rax
addl $0x40, %rbx, %rbx

In order to capture the non
linear dependencies between
feature vectors and labels we
tried a kernelized regression
with exponential kernel.

K: Training Kernel Matrix
c = (K+ λI)-1Y
k(xnew)i = k(xnew,xi)
γpre = cTk(xnew)

● Implementation and data collection
● we have written a couple of thousand lines python code to collect the feature vectors based on read write conflicts for a series of instruction.
● To evaluate under real circumstances, we have disassembled gcc and gdb and used them as input data for testing and training set.
● There are a series of matlab scripts for feature collection and learning algorithms, for future extensions and reusability.

For a set of programs with length
(bw+1) learn the difference in
number of cycles that takes to run
the program w and w/o the lat
instruction based on the feeatures
collected for the last instruction.
Then for a new program the
predicted runtime would be the
sum of predicted cycles for each
instruction.

program 2 :
movl $0x40, %rax
addl $0x40, %rax, %rax

● Kernel Regression

