Fast, Distributed Computations in the Cloud

Omid Mashayekhi
Advisor: Philip Levis

B Stanford = PLATFORM

April 7, 2017

| g

s Y

=N

Ty

A
)

Y

4rJa .

I

el

if. s - P v i
G <P =y R Sy AN 3
\ v e .;:'_ "v- Y% 2
AN e j ZOAYA
= | = i .

£ax
iy R re,

v

R

z
-

NI AT E A TR TR R

RN/ 4N T i 0 SO
4 i o i ¥ 19
- T VN,

BEg I G §

.N. L'.-:“f"v;
TN

e R A
wr

¥

R B

Cloud Frameworks

Cloud frameworks abstract away the complexities of the cloud

infrastructure from the application developers:
1. Automatic distribution

Elastic scalability

Multitenant applications

Load balancing

Fault tolerance

uhwnN

Cloud Frameworks

Task

* Job is an instance of the application running in the framework.
* Task is the unit of computation.
* Control plane makes the magic happen:

* Partitioning job in to tasks

* Scheduling tasks

* Load balancing

* Fault recovery

Evolution of Cloud Frameworks

2004

|/O-bound
data analytics

MapReduce
Hadoop

- —

10s 1s

100ms
Task Length

10ms

1ms

Evolution of Cloud Frameworks

2012

In-memory
data analytics

Spark
Naiad
[] .
\)
10s 1s 100ms 10ms 1ms

Task Length

Evolution of Cloud Frameworks

2016

Optimized
data analytics

Spark 2.0

Common IL
C++

[

L @
10s 1s 100ms 10ms 1ms
Task Length

/ 2004 2012 2016 \

I/O-bound In-memory Optimized
data analytics data analytics data analytics
MapReduce Spark Spark 2.0
doo Naiad Common IL
Ha P C++
1)
J J{

10s 1s 100ms 10ms Ims

\ Task Length /

/ 2004 2012 2016 \

I/O-bound In-memory Optimized
data analytics data analytics data analytics
Spark 2.0
MapF;educe Sp{:ll"l; Common IL
Hadoop Naia Cit
1)
J J{
10s 1s 100ms 10ms Ims

\ Task Length /

Task Execution Time (ms)

spark R0 D | 107
Spark DataFrame - 178 (6x)

Java . 67 (16x)
C++ I21 (51x)

>

* One iteration of logistic regression over a data set of size 64MB.
 Tasks implemented efficiently, could run 50x faster.

Individual tasks are getting faster.

But does it necessarily mean that
job completion time is getting shorter?

Cloud Frameworks

How about the job?

Control Plane

Task are getting orders
of magnitude faster.

11

lteration time (s)

Control Plane
The New Bottleneck

9))

5.29

s

N

[1 Control Plane
Hl Computation

-

50 100
Spark RDD

Number of Workers

* Logistic regression over a data set of size 100GB.

* Classic Spark used to be CPU-bound.

lteration time (s)

Control Plane
The New Bottleneck

6 5.29
[1 Control Plane
al HEl Computation
i 1.73
2 1.33
0
50 100 50 100

Spark RDD Spark DataFrame
Number of Workers

* Logistic regression over a data set of size 100GB.
* Spark 2.0 is already control-bound.

lteration time (s)

Control Plane
The New Bottleneck

6 5.29
[1 Control Plane
al HEl Computation
oL 1.73 143
0.75 .y
. "
50 100 50 100 50 10

Spark RDD Spark DataFrame Spark-opt
Number of Workers

* Logistic regression over a data set of size 100GB.
» Spark-opt: hypothetical case where Spark runs tasks as fast as C++.

Control plane is the emerging bottleneck for the
cloud computing frameworks.

lteration time (s)

Control Plane
The New Bottleneck

6 5.29
[1 Control Plane
al HEl Computation
pll 1.73 143 o
0.75 079, ! X
) 1 0.10 0.06 |
O : [e——S—
50 100 50 100 50 10 1 50 100:
Spark RDD Spark DataFrame Spark-opt '\ Nimbus,

- e e e =

Number of Workers

* Logistic regression over a data set of size 100GB.
* Nimbus with execution templates scales almost linearly.

Contributions

Demonstrating how the control plane is the emerging bottleneck for
data analytics frameworks.

Execution Templates as an abstraction for the control plane of cloud
computing frameworks, that enables orders of magnitude higher task
throughput, while keeping the fine-grained, flexible scheduling.

The design, implementation, and evaluation of Nimbus, a distributed
cloud computing framework that embeds execution templates.

A demonstration of a single-core graphical simulation that Nimbus
automatically distributes in the cloud showing execution templates in
practice for complex applications.

This talk

Control Plane: the Emerging Bottleneck
Design Scope of the Control Plane
Execution Templates

Nimbus: a Framework with Templates

Evaluation

This talk

Control Plane: the Emerging Bottleneck
Design Scope of the Control Plane
Execution Templates

Nimbus: a Framework with Templates

Evaluation

Cloud Frameworks Design

* Currently, there are two approaches:

1. Centralized control model.

* Controller generates and assigns tasks to the worker.

* Limited task throughput, but reactive scheduling.
2. Distributed data flow model.

* Nodes generate and spawn tasks locally.

* Great scalability, but static scheduling.

Design Spectrum
> >

Centralized Controllers Distributed Controllers

Design Spectrum
> >

Centralized Controllers
Controller

/r Task Graph <‘\
* MapReduce
P PP /

* Hadoop [] [)

 Spark
B Y

JUUL

Worker Worker Worker Worker

Loop

-

 Controller centrally schedules and spawns tasks.

Design Spectrum

<

Centralized Controllers
Controller

/r Task Graph <‘\

s

vy

Loop

>

Worker Worker Worker Worker

 Controller centrally schedules and spawns tasks.

Design Spectrum

<

Centralized Controllers
Controller

/r Task Graph <‘\

¥
Q-
o
9 %
—
v
Worker Worker Worker Worker

 Controller centrally schedules and spawns tasks.

Design Spectrum
> >

Centralized Controllers
Controller

/r Task Graph <‘\
P

A

vy

Loop

-

Worker Worker

* Controller could reactively and dynamically change the schedule.

Design Spectrum
> >

Centralized Controllers
Controller

/r Task Graph <‘\

vy

Loop

_
(]

Worker Worker

* Controller could reactively and dynamically change the schedule.

Design Spectrum
> >

Centralized Controllers
Controller

/r Task Graph <‘\

Q- ﬁ
\—
jul
Worker Worker

* Controller could reactively and dynamically change the schedule.

Design Spectrum
> >

Centralized Controllers
Controller

/r Task Graph <‘\
P
B

Loop

-

J

.
j

Worker Worker Worker Worker
* But controller bottlenecks at scale.

Design Spectrum
> >

Centralized Controllers
Controller

/r Task Graph <‘\
P

Loop

vy

% 0
H

Worker Worker Worker Worker
* But controller bottlenecks at scale.

=N

Design Spectrum
> >

Centralized Controllers
Controller

/r Task Graph <‘\
P
B

Loop

-

J

B || O || D

H

Worker Worker Worker Worker
* But controller bottlenecks at scale.

Design Spectrum
> >

Centralized Controllers
Controller

/r Task Graph <‘\

Loop

>

0

¥

m—_
0 0 0
y

Worker Worker Worker Worker
* But controller bottlenecks at scale.

Design Spectrum
> >

Centralized Controllers
Controller

/r Task Graph <‘\
P
B

Loop

-

J

Worker Worker Worker Worker
* But controller bottlenecks at scale.

lteration Time (s)

Design Spectrum
> >

Centralized Controllers

3
[1 Control Plane
5 HEl Computation
| 1.44 138 138 =22 1ea LT
: : 1.33 1.34 : —‘
1t Workers fall idle
0

30 40 50 60 70 80 90 100
Number of Workers

* Logistic regression over a data set of size 100GB in Spark 2.0 MLlIib.
* Control Plane bottlenecks at scale, generating and spawning tasks.

Design Spectrum

Synchronization

>

Distributed Controllers

Controller

Controller

—

Loop

—___/
Worker

* Each node generates and executes tasks locally.

Loop

—
v

Worker

Controller

Controller

Loop

—
v

Worker

Loop

—
v

—
Worker

* Naiad
* TensorFlow

Design Spectrum

Synchronization

>

Distributed Controllers

l

l

l

l

l

l

l

l

Eontrolle?

Eontrollep

Eontrolle?

Eontrolle?

Eontrolle?

Eontrolle?

Eontrolle?

Eontrollep

(@) (@] (@] (@) (@] (@] O (@)
8 ﬁ & 0|8 Q 3 9 B RIERRIE 9 3 9
A / B / v
_ _J J \L J _ J _ J _ J _ J _ J _ y,
Worker Worker Worker Worker Worker Worker Worker Worker

* The design scales well as there is no single bottleneck.

Design Spectrum

Synchronization

>

Distributed Controllers

l

Straggling

Controller

(e

Worker

* But, the scheduling is static.

Controller Controller
o) o)
9 9
B / R
— —
Worker Worker

* The progress speed is bound to the speed of the slowest node.
* Any change requires stopping all nodes and installing new data flow.

Design Spectrum
> >

Distributed Controllers

Synchronization

Controller Controller Controller Controller
(| ; | | |
Corn Con ﬂ Corn ﬂ Corn ﬁ
(@] (@] (@] (@]
(@) I (@) (@) (@)
1 © o o o
o * (@] (@] (@]
8 & y, 8 _ y, 8 _ y, 8 _ y,
— — — —

N/ N/ ————/ N/
Backup Worker Backup Worker Backup Worker Backup Worker

* In practice the straggler mitigation is only proactive:
* Avoiding stragglers by meticulous engineering work.
 Launching backup workers (at least doubling the resources).

Design Spectrum
> >

Distributed Controllers

Synchronization

v

Controller Controller Controller
Straggling
Ayl o — —
Cor Cor Cor Cor
o . Q_j Q_j
(@) I (@) (@)
19 S S
B / R
8. (@] (@] (@]
= |2 SN |8 N
— — — —

N/ ————/ N/
Backup Worker Backup Worker Backup Worker Backup Worker

* In practice the straggler mitigation is only proactive:
* Avoiding stragglers by meticulous engineering work.
 Launching backup workers (at least doubling the resources).

Design Spectrum
> >

Distributed Controllers

Synchronization

Controller Controller Controller
G I Controller G ﬂ G ﬁ
(@] (@] (@]
(@) I (@) (@)
128 S S
| v | v
8. (@] 1 (@1 (@]
= |2 Al | | S—
— — T — —

N/ N/ ————/ N/
Backup Worker Backup Worker Backup Worker Backup Worker

* In practice the straggler mitigation is only proactive:
* Avoiding stragglers by meticulous engineering work.
 Launching backup workers (at least doubling the resources).

Design Space

Summary
Control Plane Example Task Task
Design Framework Throughput Scheduling
MapReduce
Centralized Hadoop Low Dynamic
Spark
o Naiad _ _
Distributed High Static

TensorFlow

Design Space

Summary

Control Plane Example Task Task

Design Framework Throughput Scheduling
MapReduce

Centralized Hadoop Low Dynamic
Spark

o Naiad _ _

Distributed High Static

TensorFlow

We would like to have the best of both worlds:

* High task throughput for fast computations.
* Dynamic, fine-grained scheduling decisions.

41

Repetitive Patterns

* Advanced data analytics are iterative in nature.
— Machine learning, graph processing, image recognition, etc.

* This results in repetitive patterns in the control plane.
— Similar tasks execute with minor differences.

Repetitive Patterns

* Advanced data analytics are iterative in nature.
— Machine learning, graph processing, image recognition, etc.

* This results in repetitive patterns in the control plane.
— Similar tasks execute with minor differences.

while (error > threshold_e) { Training Estimation
while (gradient > threshold g) { Data Data
// Optimization code block g v
gradient = Gradient(tdata, coeff, param) _E %
coeff += gradient — é’-’ =
) 2 5
// Estimation code block © Q.
error = Estimate(edata, coeff, param) T
param = update_model(param, error) Iterative Optimizer Error Estimation
}

This talk

Control Plane: the Emerging Bottleneck
Design Scope of the Control Plane
Execution Templates

Nimbus: a Framework with Templates

Evaluation

Execution Templates

e Tasks are cached as parameterizable blocks on nodes.

* |nstead of assigning the tasks from scratch, templates
are instantiated by filling in only changing parameters.

-) N\
s
FDf)
NE [
\Function
' /

Execution Templates

e Tasks are cached as parameterizable blocks on nodes.

* |nstead of assigning the tasks from scratch, templates
are instantiated by filling in only changing parameters.

(T)

Df \ Load New -
D Task ids T, 2
F D" \ Pparameters P, P,

') [I

. Data list >
\ Dep. list

_ Function T,

P

N —— ~

Execution Templates
Mechanisms Summary

Instantiation: spawn a block of tasks without processing each task
individually from scratch. It helps increase the task throughput.

Edits: modifies the content of each template at the granularity of
tasks. It enables fine-grained, dynamic scheduling.

Patches: In case the state of the worker does not match the
preconditions of the template. It enables dynamic control flow.

Execution Model

Driver Program

Controller
> Datak [\
‘% Map —>
ISR 2
o Reduce
_ J
4) 4)
N J N J

Worker Worker

Execution Model

Driver Program
J Controller

Data k [\

Map

Data flow
i
Task Graph

Reduce

_ J _

Worker Worker

Execution Model

Driver Program
g Controller

Data k [\

Map

Data flow
i
Task Graph

Reduce

[Data Objects \ [Data Objects \
o0 OO0

g J g J
Worker Worker

Execution Model

Driver Program

Controller

4§

> Data k [—
g g
‘i Map G
g 2 ¥
Reduce A
\§

[Data Objects \
\§ J

Worker

-

Data Objects

~

Worker

Execution Model

Driver Program
g Controller

Data k (~ \
% o
©
= —> =
(g0) (7]
= Reduce A

(D;Objects \ (Daiobjects \

g J g J
Worker Worker

Execution Model

Driver Program

Controller

Data k [=

g a
©

= —> =
@ Map fi
© 7
- Reduce I

Worker

[Data Objects \

Exchange

e >

Data Objects

Worker

53

Repetitive Patterns

Controller

~N
v Y

Driver Program

~N

Task Graph

while (error > threshold_e) {
while (gradient > threshold_g) {
// Optimization code block
gradient = Gradient(tdata, coeff, param)
coeff += gradient

}

// Estimation code block ’
error = Estimate(edata, coeff, param)

param = update_model(param, error)

-

[Data Objects \ [Data Objects \
o0 OO0

g J g J
Worker Worker

Driver Program

while (error > threshold_e) {
while (gradient > threshold_g) {
// Optimization code block

gradient = Gradient(tdata, coeff, param)

coeff += gradient

// Estimation code block

error = Estimate(edata, coeff, param)

param = update_model(param, error)

Repetitive Patterns

Controller

“\\

Task Graph

—

(/"

P

¥

“\\

_

(/"

_

Data Objects

“\\

J

Worker

Data Objects

J

Worker

55

Repetitive Patterns

Controller

~N
v Y

Driver Program

“\\

Task Graph

while (error > threshold_e) {
while (gradient > threshold_g) {
// Optimization code block
gradient = Gradient(tdata, coeff, param)
coeff += gradient

}

// Estimation code block "
error = Estimate(edata, coeff, param)

param = update_model(param, error)

(

[Data Objects \

Data Objects

Data
Exchange

K -------- y ------------------------
Worker Worker

56

Driver Program

while (error > threshold_e) {
while (gradient > threshold_g) {
// Optimization code block

gradient = Gradient(tdata, coeff, param)

coeff += gradient

// Estimation code block

error = Estimate(edata, coeff, param)

param = update_model(param, error)

Repetitive Patterns

Controller

“\\

Task Graph

—

(/"

P

¥

“\\

_

(/"

_

Data Objects

“\\

J

Worker

Data Objects

J

Worker

57

Repetitive Patterns

Controller

~N
v Y

Driver Program

“\\

Task Graph

while (error > threshold_e) {
while (gradient > threshold_g) {
// Optimization code block
gradient = Gradient(tdata, coeff, param)
coeff += gradient

}

// Estimation code block "
error = Estimate(edata, coeff, param)

param = update_model(param, error)

(

[Data Objects \

Data Objects

Data
Exchange

K -------- y ------------------------
Worker Worker

58

Execution Templates
Abstraction

Controller

)

Task Graph

i

[Data Objech [Data Objectm
o0 o0
- J - J

Worker Worker

Abstraction

Controller

)

Task Graph

[

[Data Objech
of 99
L DR
o
1
=
\ H

J

Worker

Execution Templates

~N

[Template

Data Objectm

99

S,

Worker

Execution Templates
Abstraction

Controller

~N

Task Graph

-

~N

[Template

Data Objech

OO0

J

Worker

~N

[Template

Data Objectm

OO0

J

Worker

Abstraction

Controller

)

-

Task Graph

¥

J

Instantiate<params>

~N

[Template

Data Objech

OO0

Execution Templates

Instantiate<params>

~N

J

Worker

[Template

Data Objectm

OO0

J

Worker

Abstraction

Controller

)

Task Graph

[

~N

R | B

[Template

Data Objech

99

J

Worker

Execution Templates

~N

-y ()
"]
- L] "
) " "
At angnt)
(fun
»
n -
.

[Template

Data Objectm

99

S,

Worker

Execution Templates
Abstraction

Controller

~N

Task Graph

-

~N

[Template

Data Objech

OO0

J

Worker

~N

[Template

Data Objectm

OO0

J

Worker

Execution Templates

The Devil is in the details.

* Caching tasks implies static behavior:

— Templates and dynamic scheduling?
e Reactive scheduling changes for load balancing.
* Scheduling changes at the task granularity.

— Templates and dynamic control flow?
* Need to support nested loops.

* Need to support data dependent branches.

Execution Templates

The Devil is in the details.

* Caching tasks implies static behavior:

— Templates and dynamic scheduling?
e Reactive scheduling changes for load balancing.

* Scheduling changes at the task granularity.

Execution Templates
Edits

* If scheduling changes, even slightly, the templates are obsolete.

— For example migrating tasks among workers.

* Instead of paying the substantial cost of installing templates for
every changes, templates allow edit, to change their structure.

* Edits enable adding or removing tasks from the template and
modifying the template content, in-place.

e Controller has the general view of the task graph so it can update the
dependencies properly, needed by the edits.

Execution Templates

Edits

Controller

Task Graph

)

i

Data Objeca

OO0

~N

J

[Template

Worker

Migrate
one task

~N

[Template

Data Objectm

OO0

J

Worker

Execution Templates

Edits

Controller

~N

Task Graph

-

Edit<add} >

~N

[Template

Data Objech

OO0

J

Worker

~N

[Template

Data Objectm

OO0

J

Worker

Execution Templates

Edits
Controller
T A
§
,r_‘3 ﬁ
U — Y,

~N

[Template

Data Objects \

Worker

~N

[Template

Data Objectm

OO0

J

Worker

Execution Templates

Edits

Controller

)

¥

-

Task Graph

J

Instantiate<params>

~N

[Template

Data Objects \

Worker

Instantiate<params>

~N

[Template

Data Objectm

OO0

J

Worker

Execution Templates

The Devil is in the details.

* Caching tasks implies static behavior:

— Templates and dynamic control flow?
* Need to support nested loops.

* Need to support data dependent branches.

Execution Templates
Granularity

Training Estimation
Data Data

|_> Iterative Optimizer Error Estimation

Coefficients
Parameters

Execution Templates

Granularity
Training Estimation
Data Data

Coefficients
Parameters

Iterative Optimizer Error Estimation

* The more tasks cached in the template the better.
— The cost of template instantiation is amortized over greater number of tasks.

—But loop unrolling only works for static control flow.

Execution Templates
Granularity

Training Estimation
Data Data

Iterative Optimizer Error Estimation

Coefficients
Parameters

%*%*%@*

Template

75

Execution Templates
Granularity

Training Estimation
Data Data

Coefficients
Parameters

Iterative Optimizer Error Estimation

%*%*%*%@ e

Template

76

Execution Templates
Granularity

Training Estimation
Data Data

Coefficients
Parameters

Iterative Optimizer Error Estimation

%*%*%@

Template

_

* Cannot reuse the template (only two iterations of the inner loop).

77

Execution Templates
Granularity

Training Estimation
Data Data

|_> Iterative Optimizer Error Estimation

* Templates cannot go beyond a branch in the driver program.

Coefficients
Parameters

* Execution templates operates at the granularity of basic blocks:
— A code block with single entry and no branches except at the end.

— Itis the biggest block without sacrificing dynamic control flow.

Execution Templates
Granularity

)

-

N/
Template 1

79

Execution Templates
Granularity

Training Estimation
Data Data

Coefficients
Parameters

Iterative Optimizer Error Estimation

— \(‘I {" T 7N (N (
|
' L : I
| 11 | I
L |
|
' 11 | |
' 11 : I
Template 1 Instantiate |nstantiate Instantiate Instantiate
Template 1 Template 1 Template 1 Template 1

80

Execution Templates
Granularity

Template 2

81

Execution Templates
Granularity

Training Estimation

Ea

Iterative Optimizer Error Estimation

Data Data

Coefficients

Parameters

()\ \
|
|
|

i |
|
|

w ~an - - - l

Template 2 Instantiate

Template 2

82

Execution Templates

[Data Objech
o0

g J
Worker

Granularity
Controller
f;__l—+)

G h

. ¥
g J
EndTemplate

StartTemplate
[ngjeca
- J

Worker

Execution Templates
Granularity

Controller

~N

Task Graph

-

~N

[Template

Data Objech

OO0

J

Worker

~N

[Template

Data Objectm

OO0

J

Worker

Execution Templates
Patching

Training Estimation
Data Data

|_> Iterative Optimizer Error Estimation

* With dynamic control flow a basic block can have different entries.

Coefficients
Parameters

* The execution state is not similar in all circumstances.

Execution Templates
Patching

Training Estimation
Data Data

Coefficients
Parameters

Iterative Optimizer Error Estimation

(

o

7

_—— A/
Instantiate Instantiate
Template 1 Template 1

86

Execution Templates
Patching

Training Estimation
Data Data

Coefficients
Parameters

Iterative Optimizer Error Estimation

-

- - ——
_/v(sﬁntiate Instantiate

Template 1 Template 1

Execution Templates
Patching

Training Estimation
Data Data

Coefficients
Parameters

Iterative Optimizer Error Estimation

\ \
| |
[[
| |
| [
[I
I
Instantiate sta ntlate
Template 1 Template 1

88

Execution Templates
Patching

Training Estimation
Data Data

|—> Iterative Optimizer Error Estimation

() ()

Coefficients
Parameters

Instantiate stantiate
Template 1 I Template 1

v
Updated model parameters
only on the reducer

89

Execution Templates
Patching

* Each template has a set of preconditions that need to be satisfied
before it can be instantiated.

— For example the set of data objects in memory, accessed by the tasks
cached in the template.

Execution Templates

Patching

Controller

~N

Task Graph

-

~N

[Template

Data Objech

OO0

J

Worker

~N

[Template

Data Objectm

OO0

J

Worker

Execution Templates

Patching

Controller

Task Graph

)

i

ﬁreconditions

[Template

Data Objeca

OO0

J

Worker

ﬁreconditions

[Template

Data Objectm

OO0

J

Worker

Execution Templates
Patching

* Each template has a set of preconditions that need to be satisfied
before it can be instantiated.

— For example the set of data objects in memory, accessed by the tasks
cached in the template.

* Worker state might not match the preconditions of the template in
all circumstances.

e Controller patches the worker state before template instantiation, to
satisfy the preconditions.

Execution Templates
Patching

Controller

~N

Task Graph

-

[Template

mecp_nditions Data Objeca

J

Worker

ﬁreconditions
PN TN
. R & E

[Template

Data Objectm

OO0

J

Worker

Execution Templates
Patching

Controller

~N

Task Graph

-

Patch< IoadO >

[Template

mecp_nditions Data Objeca

J

Worker

ﬁreconditions
PN TN
. R & E

[Template

Data Objectm

OO0

J

Worker

Execution Templates
Patching

Controller

~N

Task Graph

-

meconditions
0“."
3

[Template

Data Objeca

o®

J

Worker

ﬁreconditions
“.. ‘I.'
. R & E

[Template

Data Objectm

OO0

J

Worker

Execution Templates
Patching

Controller

)

¥

-

Task Graph

J

Instantiate<params>

meconditions
0“."
3

[Template

Data Objeca

o®

J

Worker

Instantiate<params>

ﬁreconditions
" Ta g,
S

[Template

Data Objectm

OO0

J

Worker

Execution Templates
Patching

Controller

)

Task Graph

i

mecp_nditions Data ObjECh mec‘o.nditi‘qns Data Objectﬁ

%1 99

1 >
J
Worker Worker

Ll

S,

[Template

[Template

Execution Templates
Mechanisms Summary

Instantiation: spawn a block of tasks without processing each task
individually from scratch. It helps increase the task throughput.

Edits: modifies the content of each template at the granularity of
tasks. It enables fine-grained, dynamic scheduling.

Patches: In case the state of the worker does not match the
preconditions of the template. It enables dynamic control flow.

This talk

Control Plane: the Emerging Bottleneck
Design Scope of the Control Plane
Execution Templates

Nimbus: a Framework with Templates

Evaluation

Nimbus

Nimbus is designed for low latency, fast computations in the cloud.
— Implemented in C++ (the core library is ~35,000 semicolons).

— Mutable data model to allow in-place operations.
Nimbus embeds execution templates for its control plane.
— The centralized controller allows dynamic scheduling and resource allocation.

— Execution templates help deliver high task throughput at scale.

Nimbus supports traditional data analytics as well as Eulerian and hybrid
graphical simulations; for the first time in a cloud framework.

— Supervised/unsupervised learning algorithms, graph library.

— PhysBAM library (water, smoke, etc.)

Nimbus

Control Flow

Controller Controller Controller Controller
Worker Worker Worker Worker Worker Worker Worker Worker

 Tasks spawn other tasks for execution (similar to Legion).
* Driver program is a lineage of tasks executing on the workers.
* More flexible DAG for the task graph.

* Not just narrow and wide dependencies.

* Needed for graphical simulations.

Nimbus

Controller and Worker Templates

Controller

Controller
Templates

Instantiate

UL

Worker Worker Worker Worker

Nimbus

Controller and Worker Templates

Controller

Controller
Templates

JUUJU

Worker Worker Worker Worker

Nimbus

Controller and Worker Templates

Controller

Worker
Templates

Worker Worker Worker Worker

Nimbus

Controller and Worker Templates

Controller

)

GlaEEGES

Worker Worker Worker Worker

Nimbus

Graphical Simulations
Computing Nodes

4)

app.so
| 4
PhysicalTask(advect, {1,2,3}) T :

GeometricTask(advect, left regq) P | Manager HTransIatoi‘

Driver Program: KGeometricTask(advect, right regq) -

4 Controller
Partition prt = : / \ \ / /

{2, 1, 1}; Logical Data II’ E

Creat locit t); : = o icati
reate(velocity, pre); | || g % | D EEE copy !,/ Application

: Q o

Op(exec: advect, — & —>_ % TaSkSIII Data.

data: velocity, % > /. ;
read: core/ghost, = : n qE_ .\

write: ghost); : _ Physical Data ~/ :

v HT Iatol

LogicalTask(advect, {A,B,C}) PhvsicalTask(ad N 4.5 6 | Manager rans ato-r

LogicalTask(advect, {B,C,D}) ysicalTask(advect, {4,5,6}) 1 :

\ 4

app.so

\ —
* The goal is to automatically distribute sequential library kernels.

* Four layer data abstraction (geometric, logical, physical, application).
* Automatic translation and caching between the data layers.

107

, nimbus.stanford.edu
Nimbus

* For more information you can visit Nimbus website.

This talk

Control Plane: the Emerging Bottleneck
Design Scope of the Control Plane
Execution Templates

Nimbus: a Framework with Templates

Evaluation

Evaluation

Results Summary

e Control plane task throughput:

— Execution templates match the strong scaling performance of
frameworks with distributed control plane design.

* Dynamic scheduling:

— Execution templates allows low cost, reactive scheduling and
dynamic resource allocation similar to a centralized frameworks.

* Dynamic control flow:

— Execution templates can handle applications with nested loops and
data dependent branches with low overhead.

Evaluation
Strong Scalability with Templates

2
- A [Control Plane
) — HEl Computation
£ ;
e
c 1 N~
ie, 3 ©
e
- N
o = N o 0 (|:l| o O
S s = 9 s = S
o o o o
0 20 50 100 20 50 100 20 50 100
Spark-opt Naiad-opt Nimbus

Number of Workers

* Logistic regression over data set of size 100GB.

* Spark-opt and Naiad-opt, runs tasks as fast as C++ implementation.

* Nimbus centralized controller with execution templates matches the
performance of Naiad with a distributed control plane.

Evaluation

Reactive, Fine-Grained Scheduling with Templates

20 =
S Migrating 5% of the . et
_________________________ _¢_-_$'-
= .*
(e 'o"
o110 S _.a- g
e) caeeE L st >
o
S | ... — Nimbus
--= Naiad-opt
0 ‘ ‘
0 1 2

Time (seconds)

* Logistic regression over data set of size 100GB, on 100 workers.
* Naiad-opt curve is simulated (migrations every 5 iterations).
* Execution templates allow low cost, reactive scheduling changes
through edits at task granularity.

* Single edit overhead is only 41us (in average).

lteration Time (s)

Evaluation

Dynamic Resource Allocation with Templates

E’ x100 i E’ x50 5| Jx100 [Control Plane
= EEE Computation

_Installing new |
¥ templates Validating
preconditions for
’/ template reuse

1
|
| 1
|

10 5 20 125 | 30 35
lteration Index

* Logistic regression over 100GB of data, on 50/100 workers.

* One-time template installation cost is “40% of direct task scheduling.

* Nimbus allows dynamic resource allocation.

* Nimbus installs multiple versions of a template depending on resources.

113

Evaluation
High Task Throughput with Templates

T 6 | | ‘ ‘ ‘
C
gg 4D/D/D/D/|:|’EI—EI—EI—EI—-EI
Se 2 OO Spark-opt |
S5 O 0 ‘ ‘ ‘ ‘ ‘
8 o
£8 50—~~~
ég 100}
>
o 50} 0-O Nimbus |
£ o

10 20 30 40 50 60 70 80 90 100
Number of Workers

» Spark and Nimbus both have centralized controller.

* Nimbus task throughput scales super linearly with more workers.
* O(N?): more tasks and shorter tasks, simultaneously.

* For a task graphs with single stage:
* Instantiation cost is <2us per task (500,000 tasks per second).

Evaluation

Graphical Simulations Distributed in Nimbus

115

Evaluation

Complexities of Graphical Simulations

Levelset Positive Particles Positive Removed Particles

J !

Velocity Negative Particles Negative Removed Particles
* 40 different variables: scalar, vector, particle.
* Triply nested loop with data dependent branches.
* 9 different templates (basic blocks).
* 3 branches that need patching.

Evaluation

Speedup with Templates

200 o MPpI

=
ul
o

100}

lteration time (s)

ol
o

24.7

. I

1 Nimbusw/ CT
- I Nimbus w/ CT + WT

35.2

27.8

196.8

7 Nimbus w/o Templates 173.3

31.7

25.3 -

e Canonical water simulations under Nimbus and MPI.

(8, 64, 5123)

36.5

I

(64, 512, 10243)

(#workers, #cores, #cells)

* Without templates, Nimbus is almost 6x slower than MPI.
* Slow down means either lower resolution or more time/money.

117

Evaluation

Speedup with Templates

200 pumm MPI 196.8

7 Nimbus w/o Templates 173.3
- [Nimbus w/ CT
Q150 mmm Nimbus w/ CT + WT $180
()
£
et
c 100}
9
4
©
—
3

35.2 31.7 36.5
24.7 27.8 25.3 :
- = . o
0 (8, 64, 5123) (64, 512, 10243)

(#workers, #cores, #cells)

e Canonical water simulations under Nimbus and MPI.
* Without templates, Nimbus is almost 6x slower than MPI.
* Slow down means either lower resolution or more time/money.

118

Evaluation
Comparison with Hand-Tuned MPI

(o)}
o

I MPl:Communication 1 Nimbus:Controller
I MPl:Compute [Nimbus:Communication
’ B Nimbus:Compute |

o1
o

N
S

36.5

24.7 25.3

lteration time (s)
N w
o o

=
Q

(64, 512, 1024%)
(#workers, #cores, #cells)

(8, 64, 512°)

e Canonical water simulations under Nimbus and MPI.

* Nimbus performance is within 3-15% of the hand-tuned MIP.

* At 512 cores, there are more than 1 million distinct data objects and
task throughput picks at 460,000 tasks per second.

119

Evaluation

Load Balancing and Fault Recovery with Templates

C —— Enabled rewind from checkpoint 1
v i .
o) 400 R Disabled l checkpomt
&
-
i I~ one node fails
o 200} checkpoint
L amEEEEEE R A A AR R R R
O ---------
@
= tone node straggles
0 x x 1
0 20 40 60

Time (minute)

* Nimbus controller adapts to the stragglers and worker failures.
* Templates are seamlessly installed as schedule changes.

Contributions

Demonstrating how the control plane is the emerging bottleneck for
data analytics frameworks.

Execution Templates as an abstraction for the control plane of cloud
computing frameworks, that enables orders of magnitude higher task
throughput, while keeping the fine-grained, flexible scheduling.

The design, implementation, and evaluation of Nimbus, a distributed
cloud computing framework that embeds execution templates.

A demonstration of a single-core graphical simulation that Nimbus
automatically distributes in the cloud showing execution templates in
practice for complex applications.

Conclusion

Control Plane Design Example Task Task
Framework Throughput Scheduling
MapReduce

Centralized Hadoop Low Dynamic
Spark

o Naiad _ _

Distributed High Static
TensorFlow

Centralized w/ Nimbus High Dynamic

Execution Templates

Thank You!

