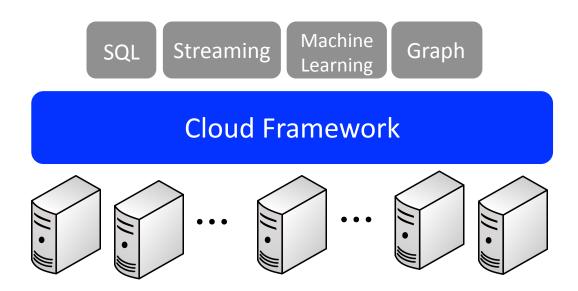
Fast, Distributed Computations in the Cloud

Omid Mashayekhi

Advisor: Philip Levis

April 7, 2017

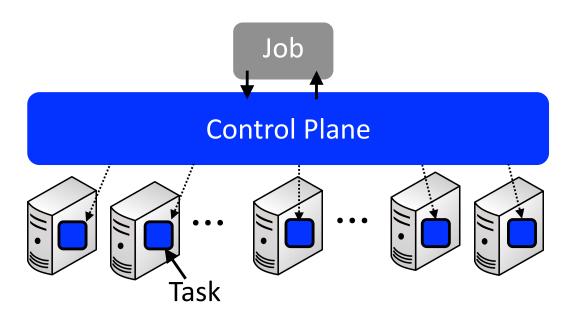
Cloud Frameworks



Cloud frameworks abstract away the complexities of the cloud infrastructure from the application developers:

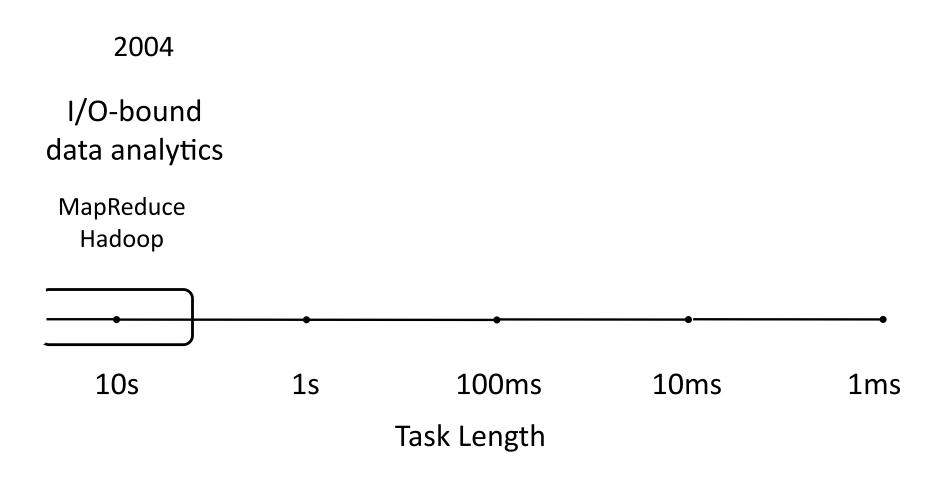
- 1. Automatic distribution
- 2. Elastic scalability
- 3. Multitenant applications
- 4. Load balancing
- 5. Fault tolerance

Cloud Frameworks

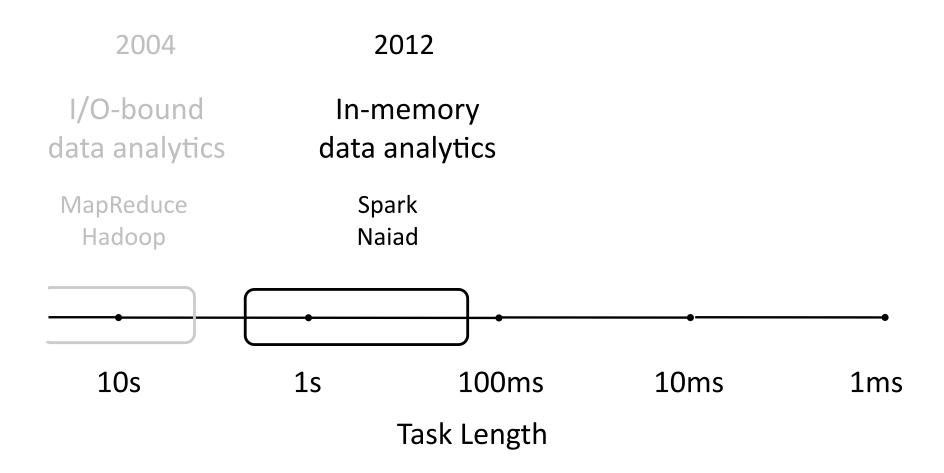


- Job is an instance of the application running in the framework.
- Task is the unit of computation.
- Control plane makes the magic happen:
 - Partitioning job in to tasks
 - Scheduling tasks
 - Load balancing
 - Fault recovery

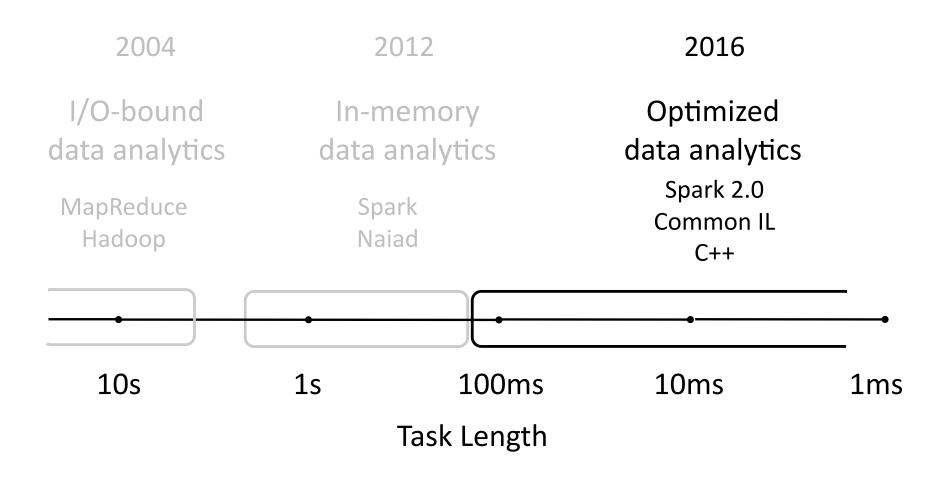
Evolution of Cloud Frameworks

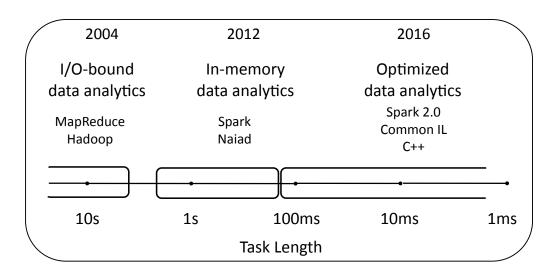


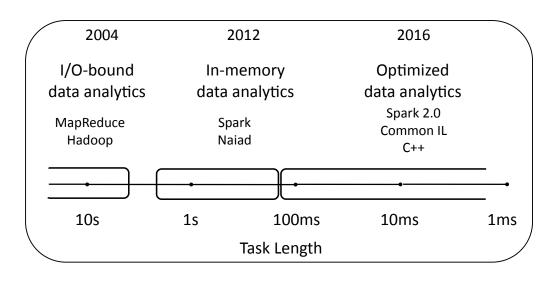
Evolution of Cloud Frameworks

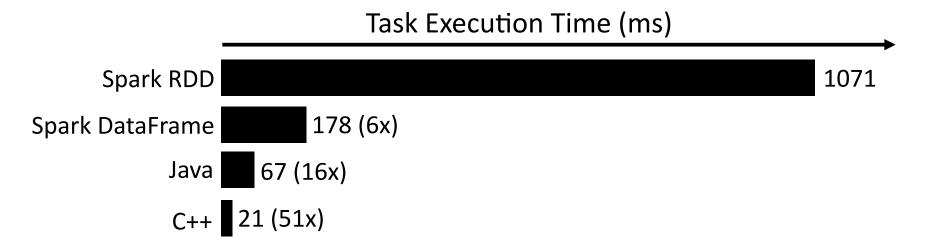


Evolution of Cloud Frameworks







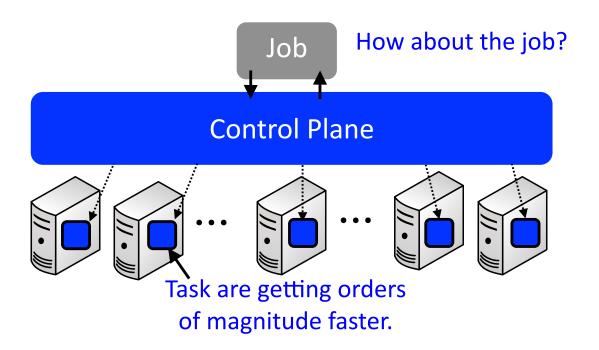


- One iteration of logistic regression over a data set of size 64MB.
- Tasks implemented efficiently, could run **50x** faster.

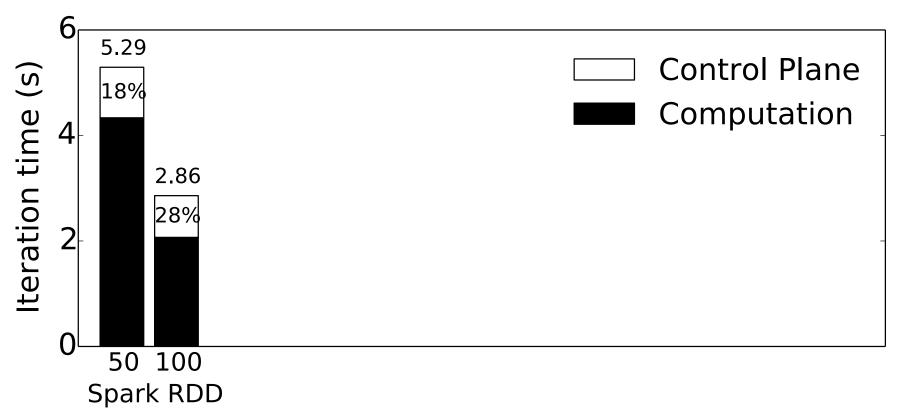
Individual tasks are getting faster.

But does it necessarily mean that job completion time is getting shorter?

Cloud Frameworks



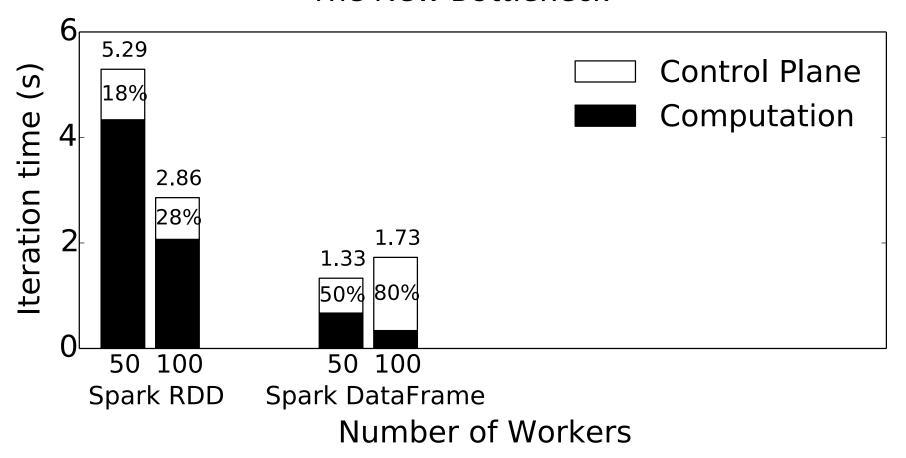
The New Bottleneck



Number of Workers

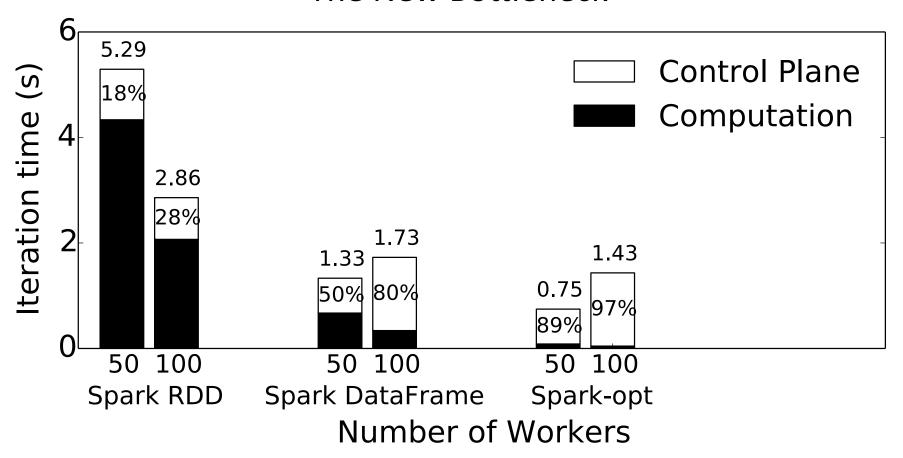
- Logistic regression over a data set of size 100GB.
- Classic Spark used to be **CPU-bound**.

The New Bottleneck



- Logistic regression over a data set of size 100GB.
- Spark 2.0 is already control-bound.

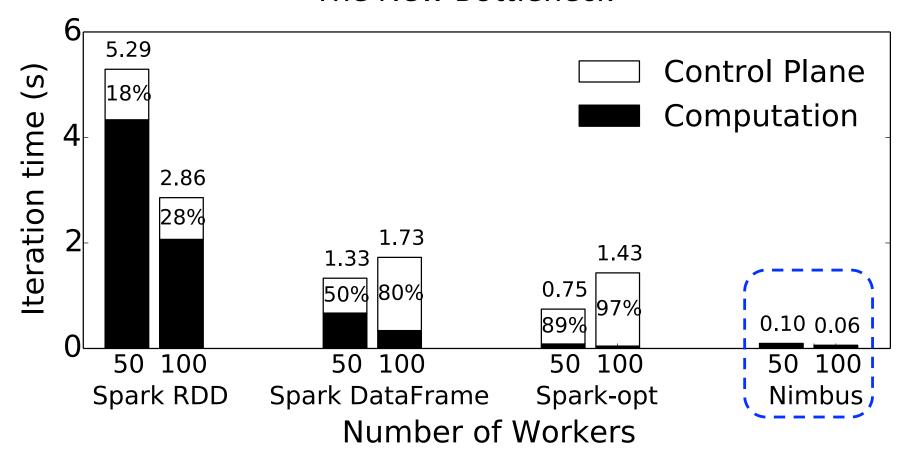
The New Bottleneck



- Logistic regression over a data set of size 100GB.
- Spark-opt: hypothetical case where Spark runs tasks as fast as C++.

Control plane is the emerging bottleneck for the cloud computing frameworks.

The New Bottleneck



- Logistic regression over a data set of size 100GB.
- Nimbus with execution templates scales almost linearly.

Contributions

- Demonstrating how the **control plane** is the emerging **bottleneck** for data analytics frameworks.
- Execution Templates as an abstraction for the control plane of cloud computing frameworks, that enables orders of magnitude higher task throughput, while keeping the fine-grained, flexible scheduling.
- The design, implementation, and evaluation of Nimbus, a distributed cloud computing framework that embeds execution templates.
- A demonstration of a single-core graphical simulation that Nimbus automatically distributes in the cloud showing execution templates in practice for complex applications.

This talk

- Control Plane: the Emerging Bottleneck
- Design Scope of the Control Plane
- Execution Templates
- Nimbus: a Framework with Templates
- Evaluation

This talk

- Control Plane: the Emerging Bottleneck
- Design Scope of the Control Plane
- Execution Templates
- Nimbus: a Framework with Templates
- Evaluation

Cloud Frameworks Design

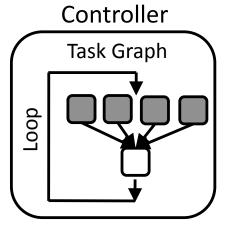
- Currently, there are two approaches:
 - 1. Centralized control model.
 - Controller generates and assigns tasks to the worker.
 - Limited task throughput, but reactive scheduling.
 - 2. Distributed data flow model.
 - Nodes generate and spawn tasks locally.
 - Great scalability, but static scheduling.

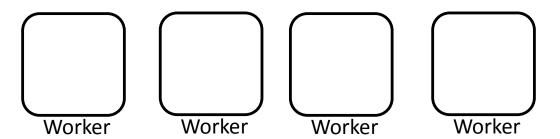
Design Spectrum Centralized Controllers Distributed Controllers

Centralized Controllers

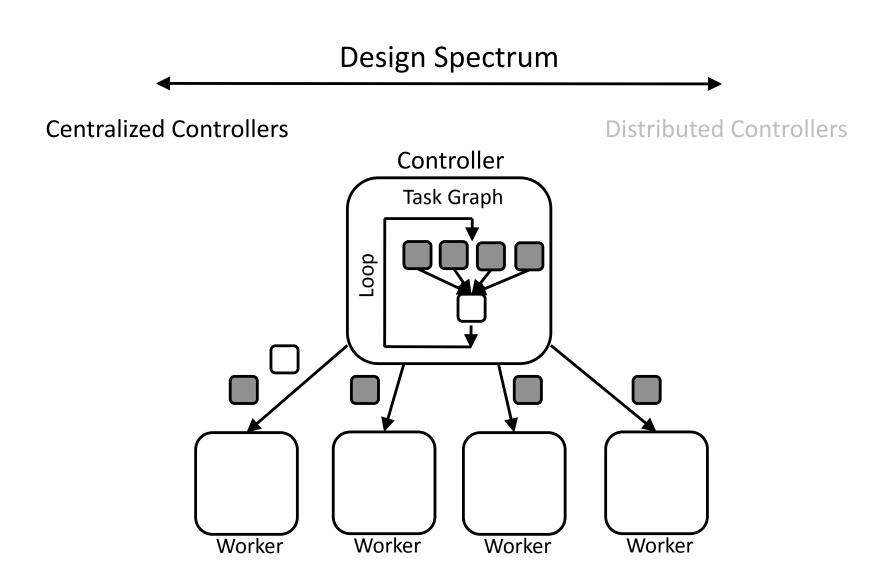
Distributed Controllers

- MapReduce
- Hadoop
- Spark

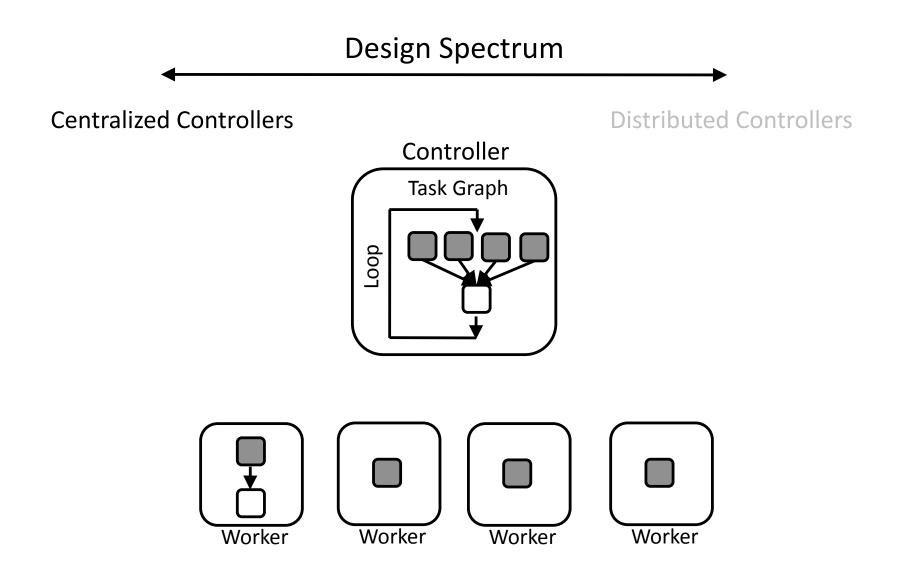




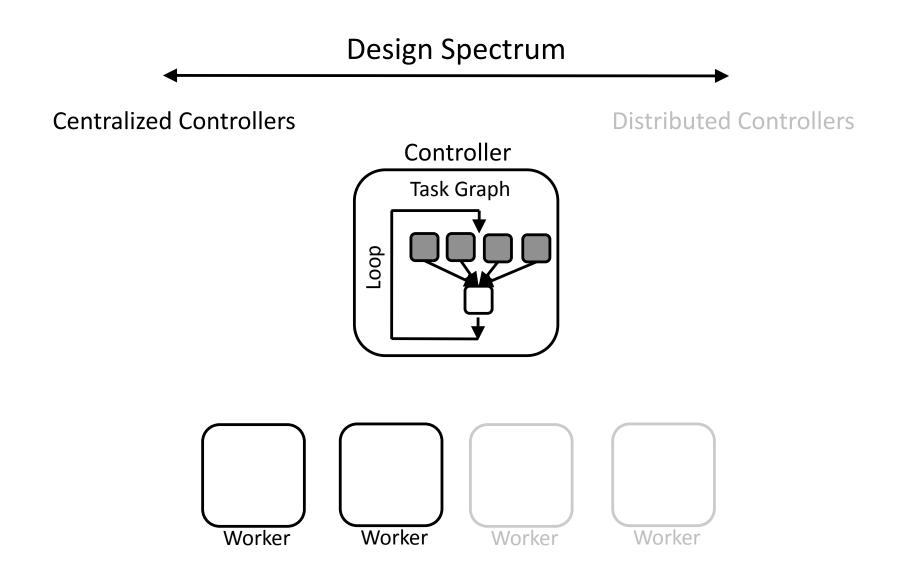
• Controller centrally schedules and spawns tasks.



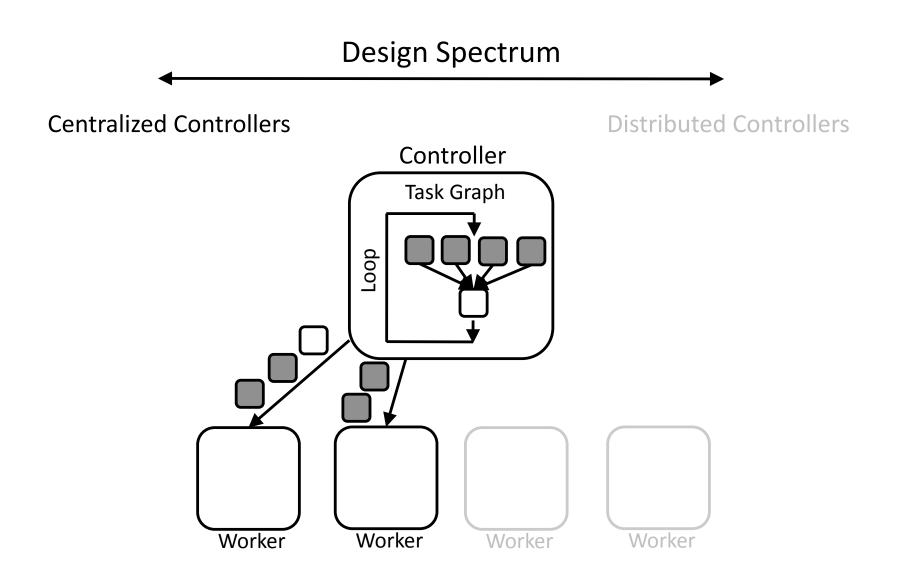
• Controller centrally schedules and spawns tasks.



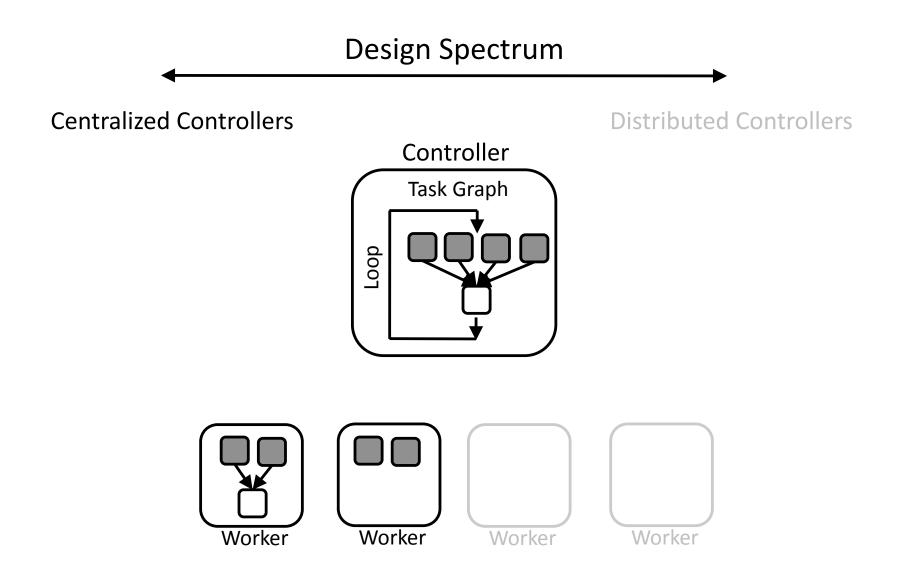
• Controller centrally schedules and spawns tasks.



• Controller could reactively and dynamically change the schedule.



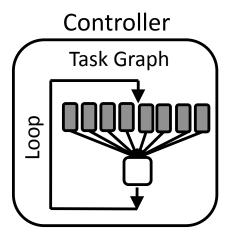
• Controller could reactively and dynamically change the schedule.

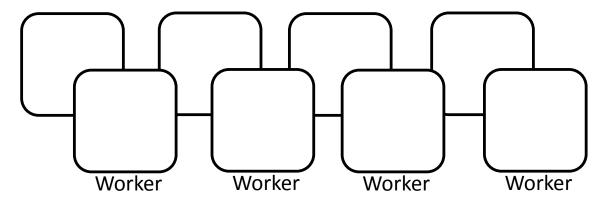


• Controller could reactively and dynamically change the schedule.

Centralized Controllers

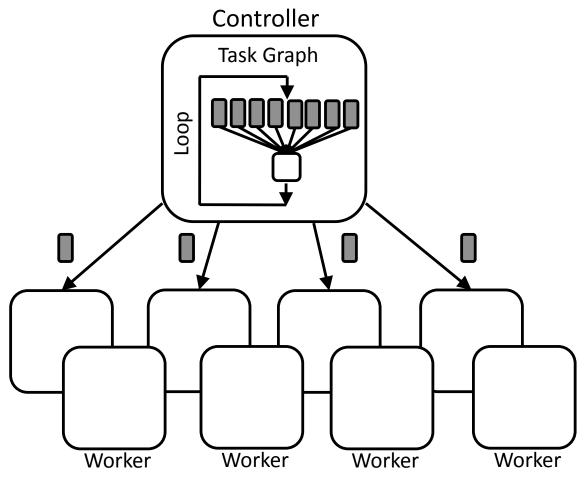
Distributed Controllers





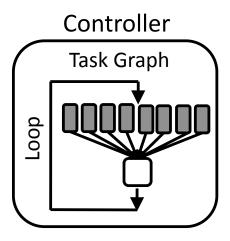
Centralized Controllers

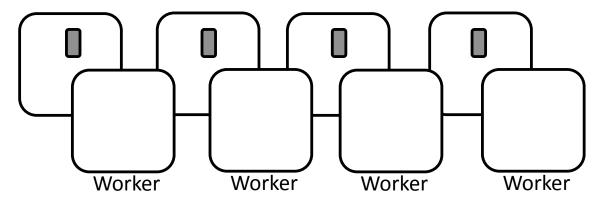
Distributed Controllers



Centralized Controllers

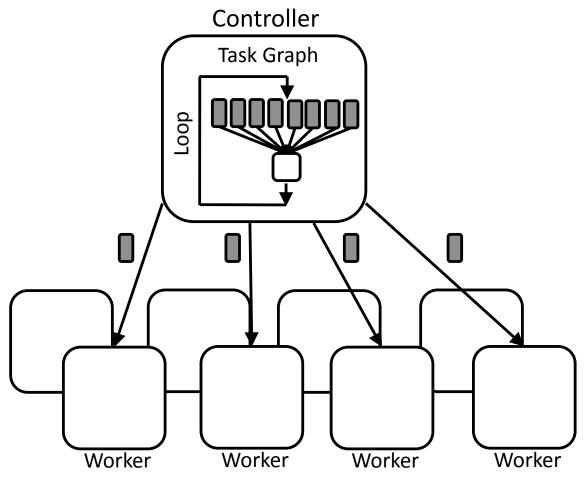
Distributed Controllers





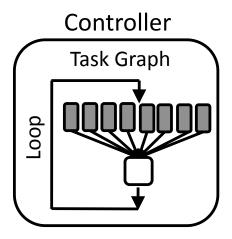
Centralized Controllers

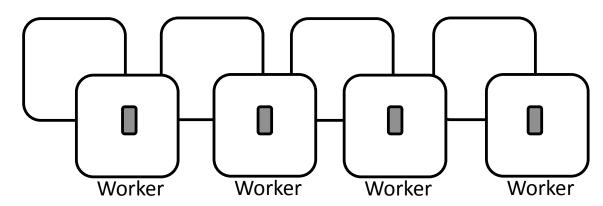
Distributed Controllers

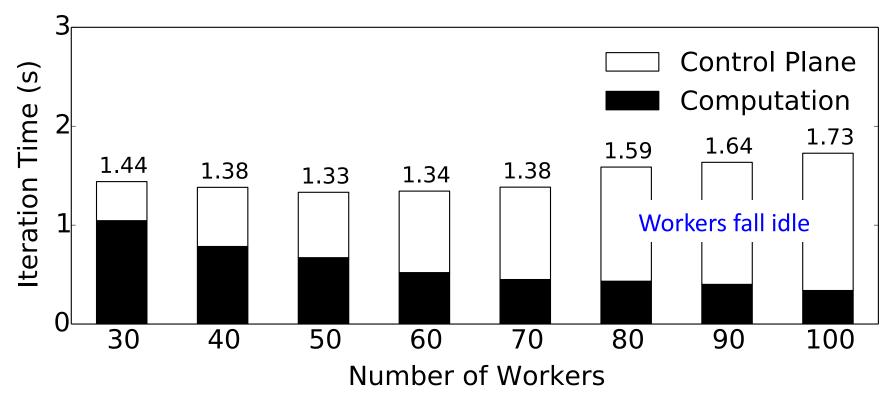


Centralized Controllers

Distributed Controllers

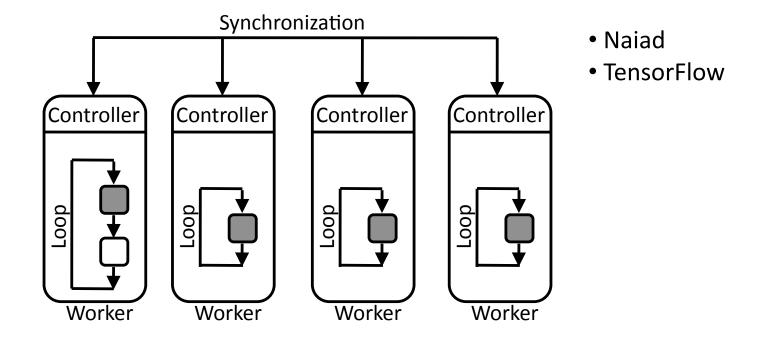






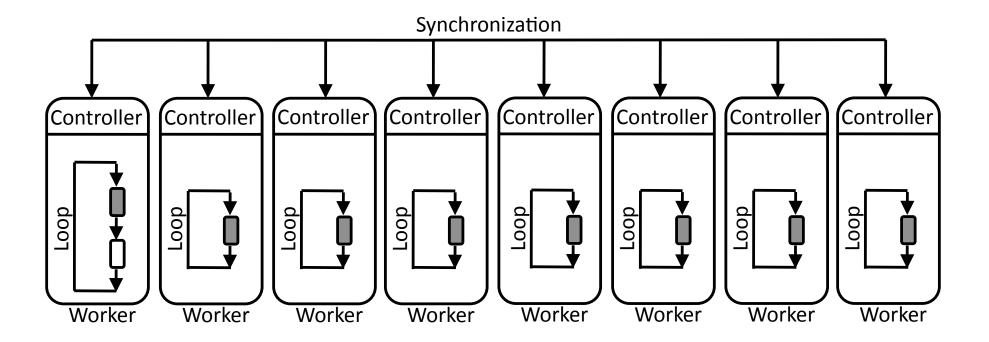
- Logistic regression over a data set of size 100GB in Spark 2.0 MLlib.
- Control Plane bottlenecks at scale, generating and spawning tasks.

Design Spectrum ← Centralized Controllers Distributed Controllers



• Each node generates and executes tasks locally.

Design Spectrum → Centralized Controllers Distributed Controllers

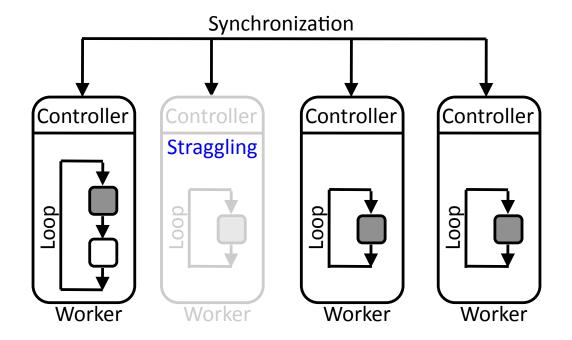


• The design scales well as there is no single bottleneck.

Design Spectrum Distributed Controllers

Centralized Controllers

Distributed Controllers

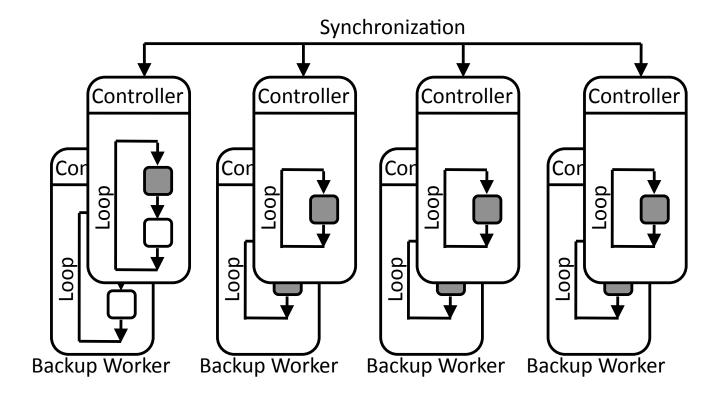


- But, the scheduling is static.
 - The progress speed is bound to the speed of the slowest node.
 - Any change requires stopping all nodes and installing new data flow.

Design Spectrum

Centralized Controllers

Distributed Controllers

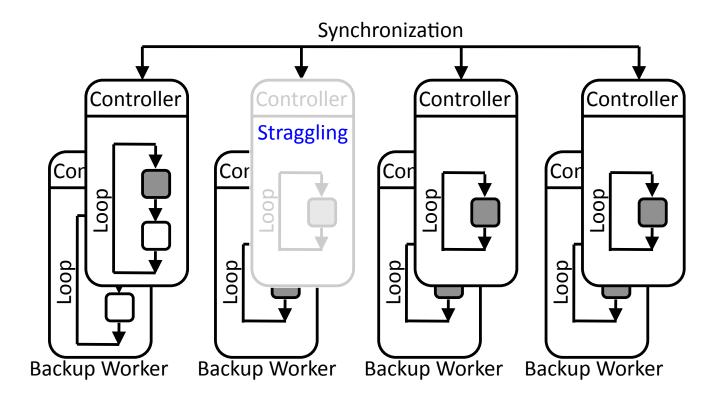


- In practice the straggler mitigation is only **proactive**:
 - Avoiding stragglers by meticulous engineering work.
 - Launching backup workers (at least doubling the resources).

Design Spectrum

Centralized Controllers

Distributed Controllers

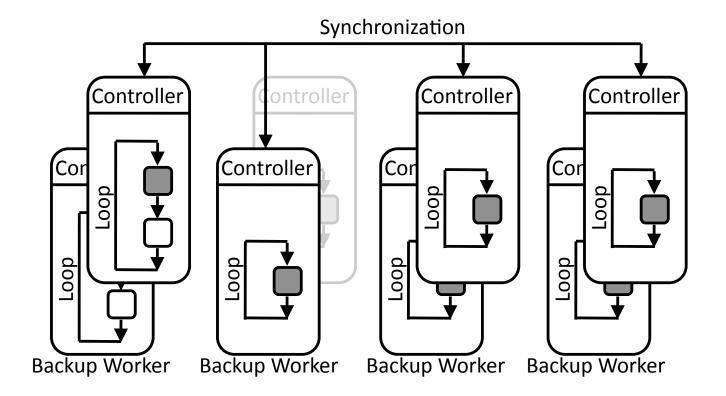


- In practice the straggler mitigation is only **proactive**:
 - Avoiding stragglers by meticulous engineering work.
 - Launching backup workers (at least doubling the resources).

Design Spectrum

Centralized Controllers

Distributed Controllers



- In practice the straggler mitigation is only **proactive**:
 - Avoiding stragglers by meticulous engineering work.
 - Launching backup workers (at least doubling the resources).

Design Space

Summary

Control Plane Design	Example Framework	Task Throughput	Task Scheduling
Centralized	MapReduce		
	Hadoop	Low	Dynamic
	Spark		
Distributed	Naiad	High	Static
	TensorFlow		

Design Space

Summary

Control Plane Design	Example Framework	Task Throughput	Task Scheduling
Centralized	MapReduce		
	Hadoop	Low	Dynamic
	Spark		
Distributed	Naiad	High	Static
	TensorFlow		

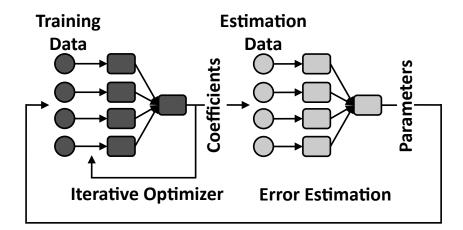
We would like to have the best of both worlds:

- High task throughput for fast computations.
- Dynamic, fine-grained scheduling decisions.

- Advanced data analytics are iterative in nature.
 - Machine learning, graph processing, image recognition, etc.
- This results in repetitive patterns in the control plane.
 - Similar tasks execute with minor differences.

- Advanced data analytics are iterative in nature.
 - Machine learning, graph processing, image recognition, etc.
- This results in repetitive patterns in the control plane.
 - Similar tasks execute with minor differences.

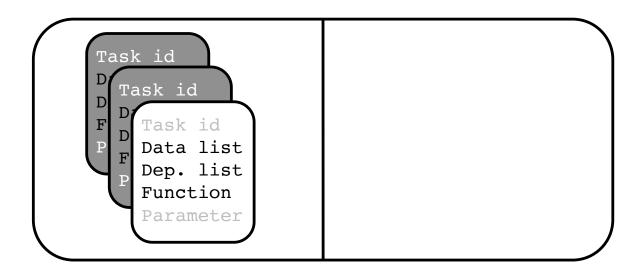
```
while (error > threshold_e) {
    while (gradient > threshold_g) {
        // Optimization code block
        gradient = Gradient(tdata, coeff, param)
        coeff += gradient
    }
    // Estimation code block
    error = Estimate(edata, coeff, param)
    param = update_model(param, error)
}
```



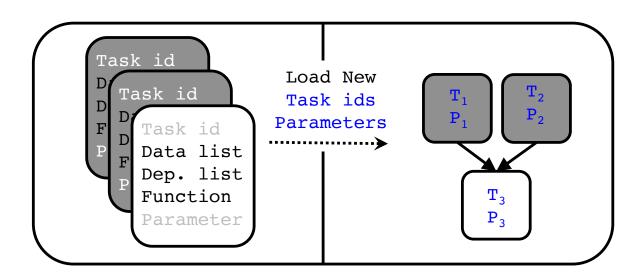
This talk

- Control Plane: the Emerging Bottleneck
- Design Scope of the Control Plane
- Execution Templates
- Nimbus: a Framework with Templates
- Evaluation

- Tasks are cached as parameterizable blocks on nodes.
- Instead of assigning the tasks from scratch, templates are instantiated by filling in only changing parameters.

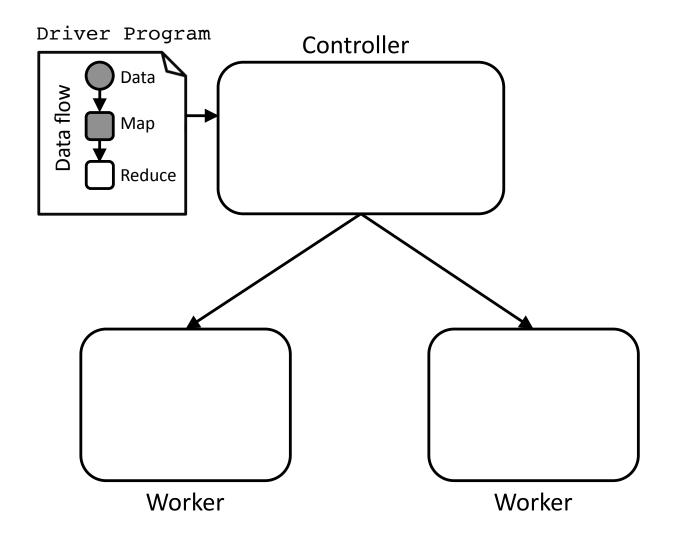


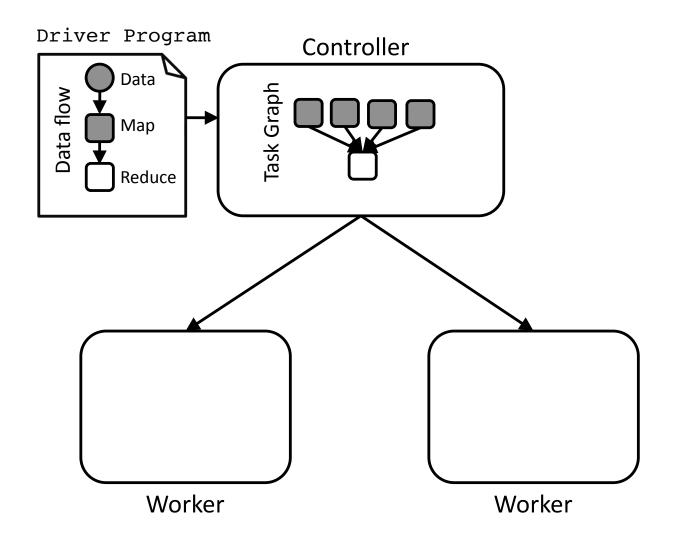
- Tasks are cached as parameterizable blocks on nodes.
- Instead of assigning the tasks from scratch, templates are instantiated by filling in only changing parameters.

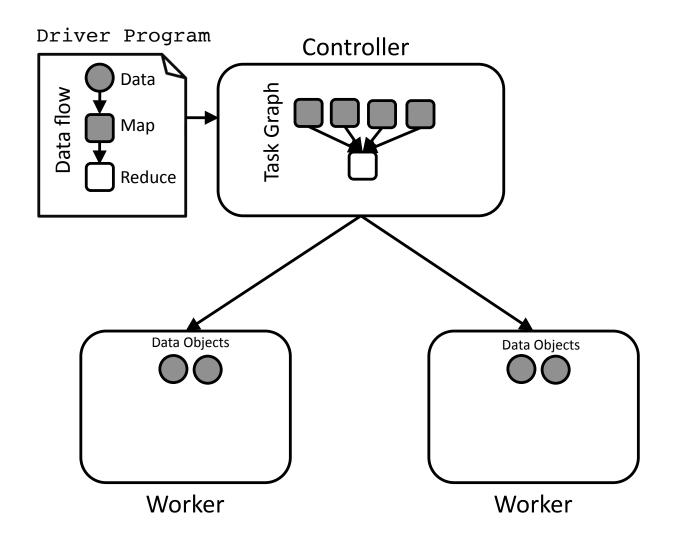


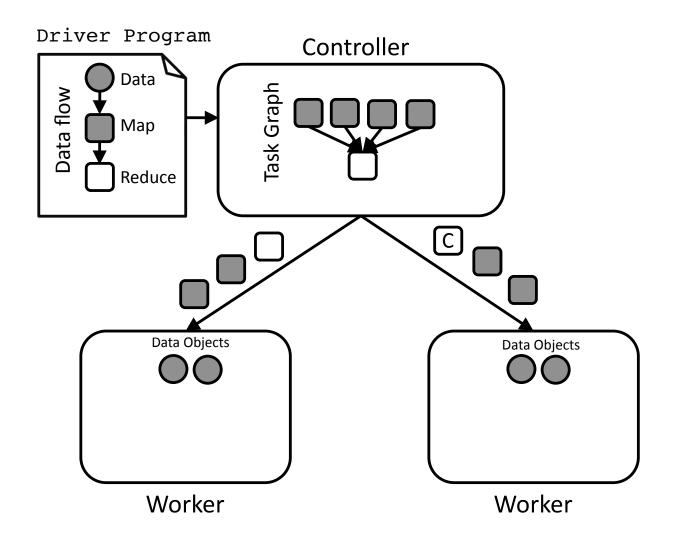
Execution Templates Mechanisms Summary

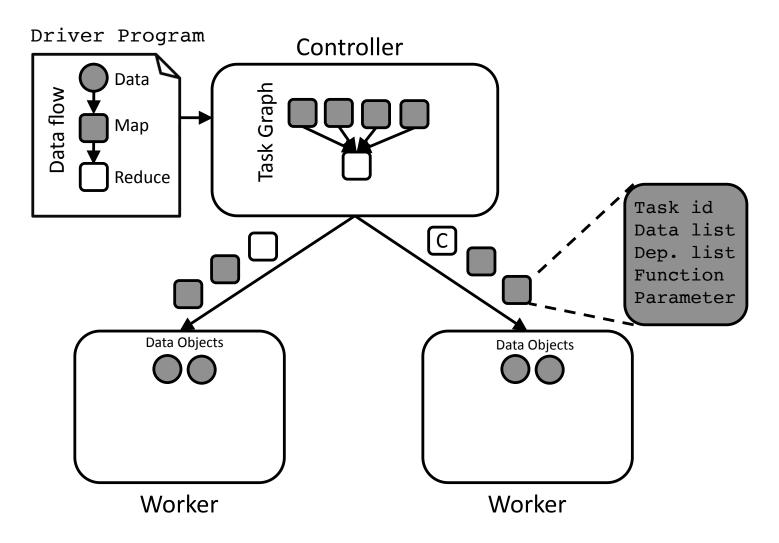
- Instantiation: spawn a block of tasks without processing each task individually from scratch. It helps increase the task throughput.
- Edits: modifies the content of each template at the granularity of tasks. It enables fine-grained, dynamic scheduling.
- Patches: In case the state of the worker does not match the preconditions of the template. It enables dynamic control flow.

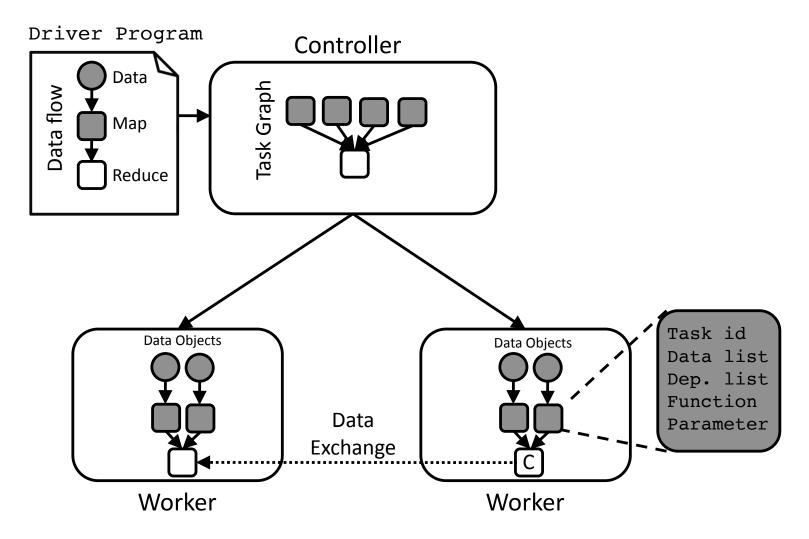


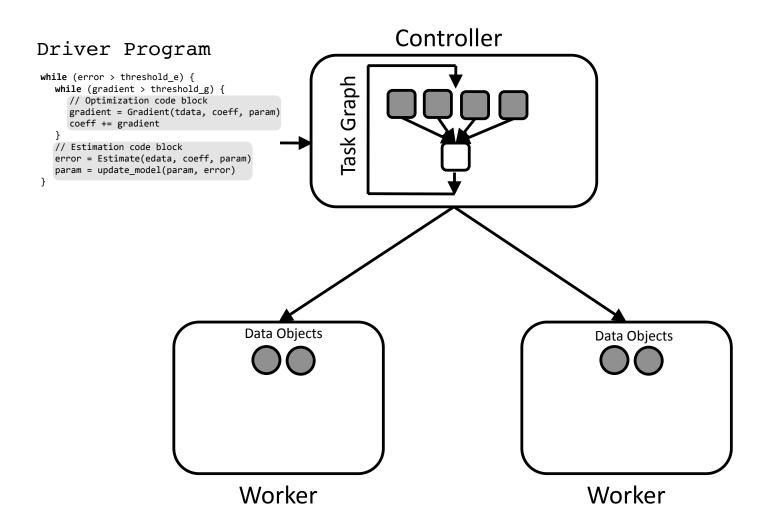


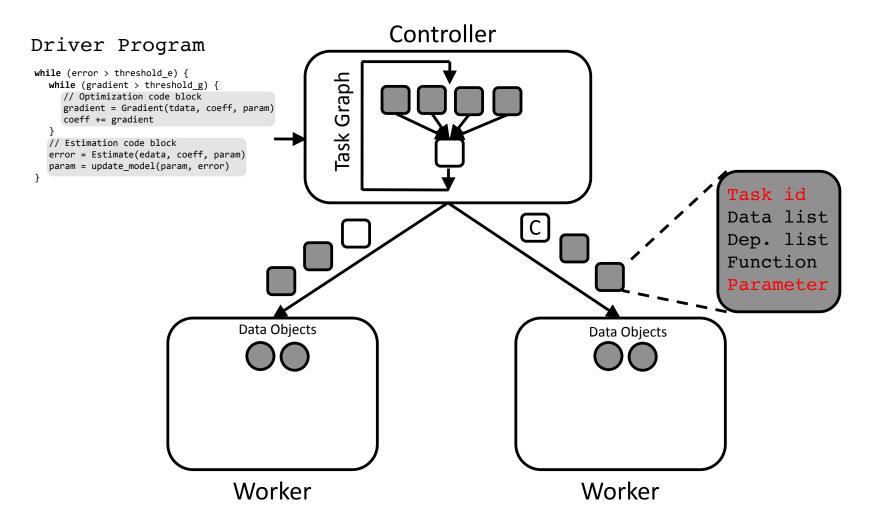


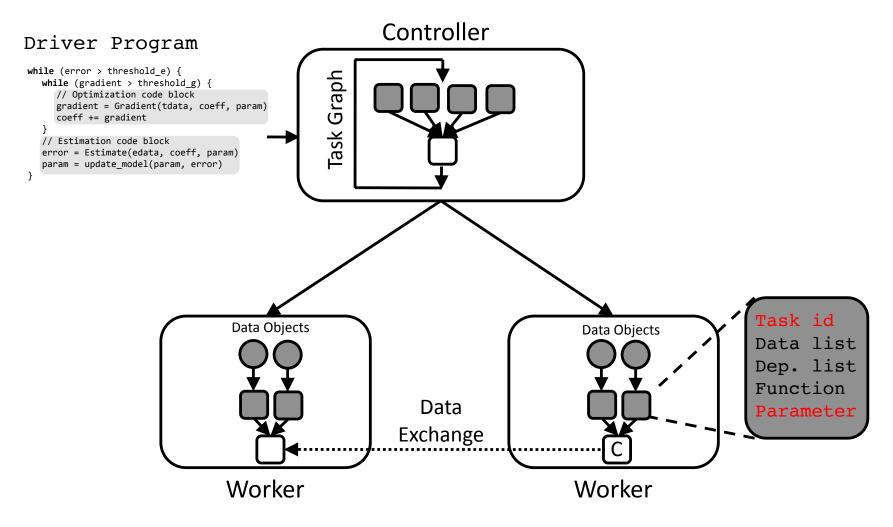


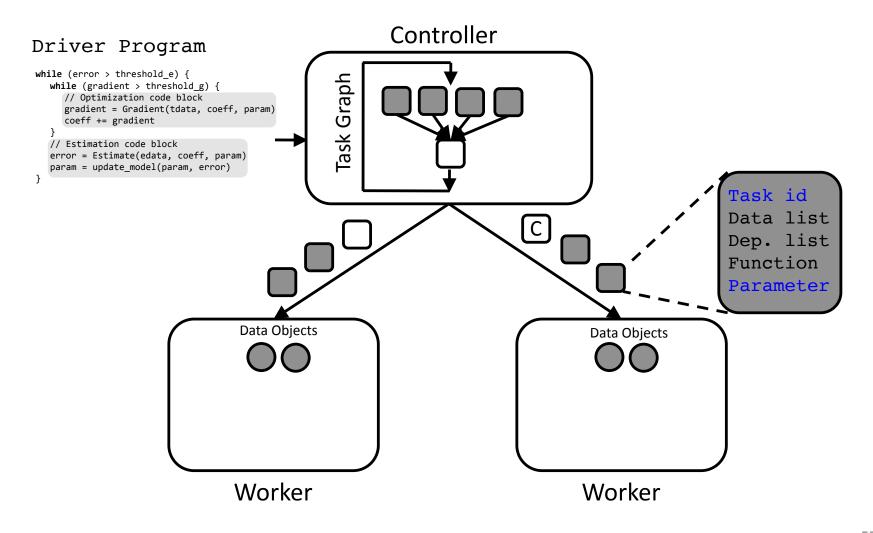


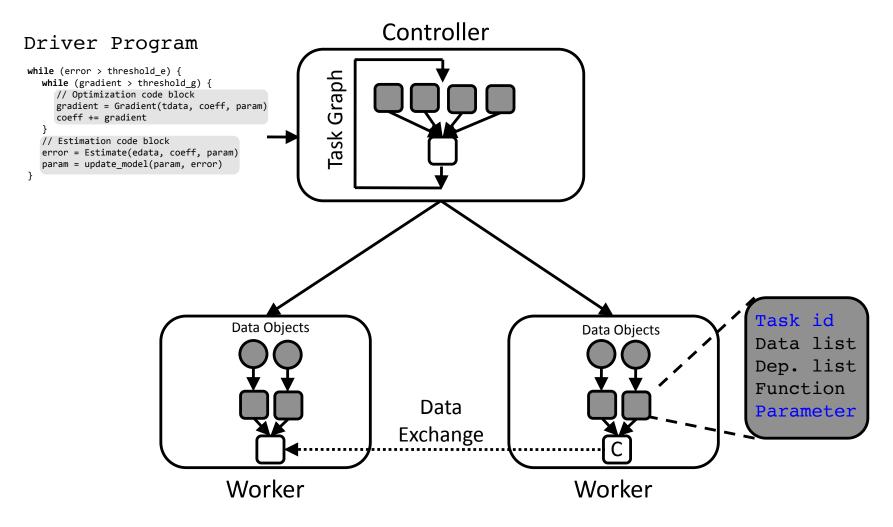


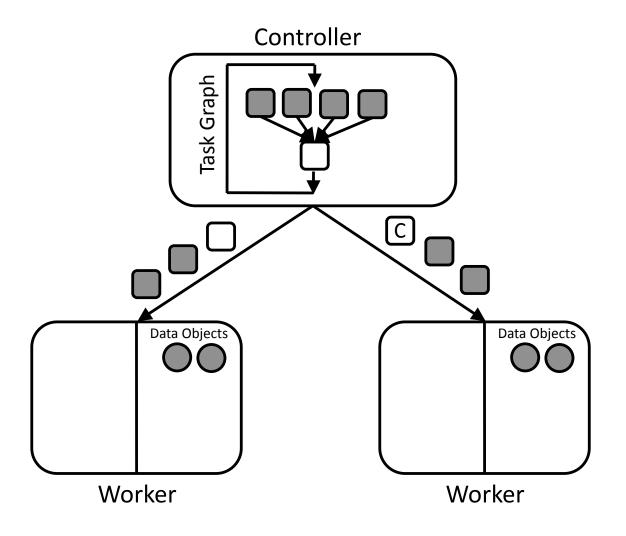




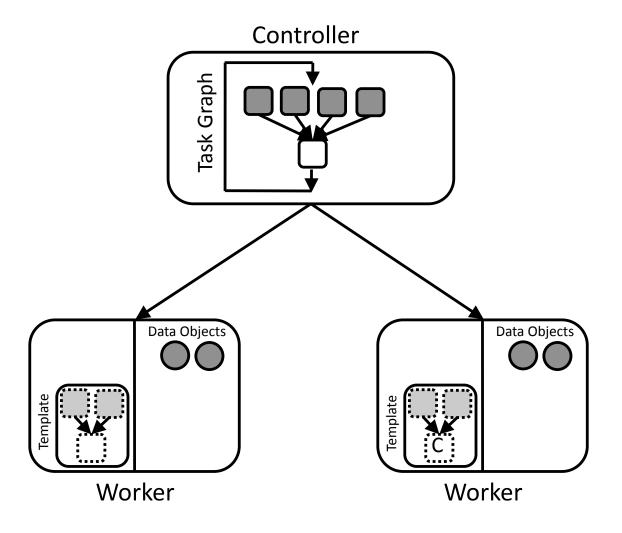


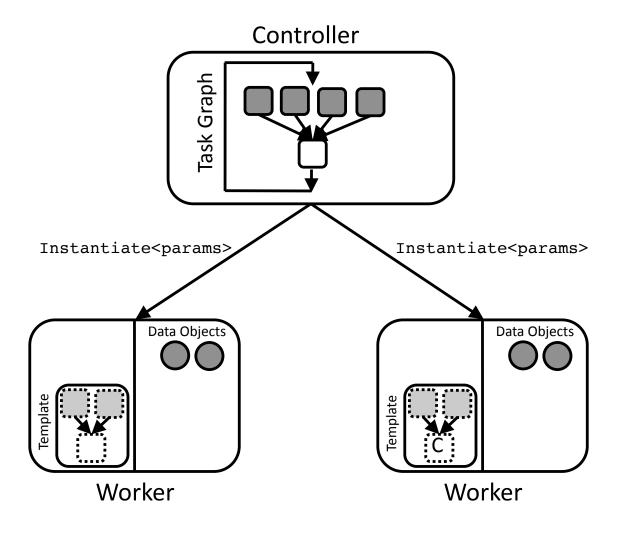


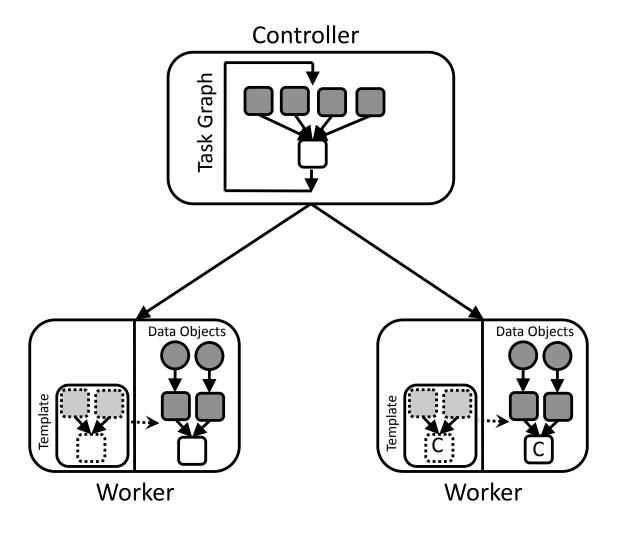


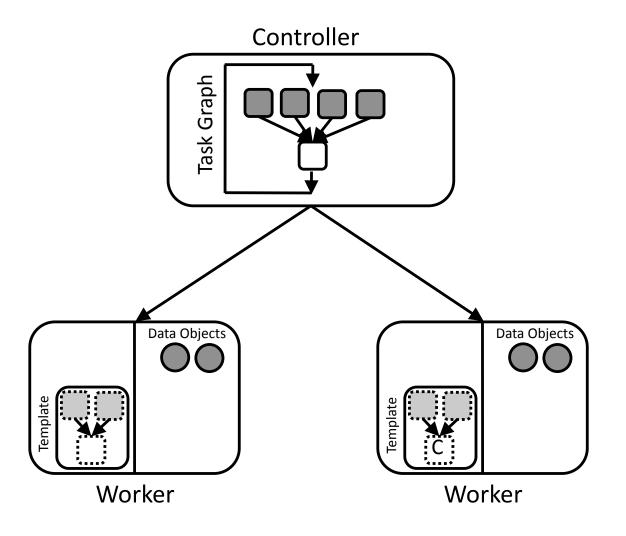












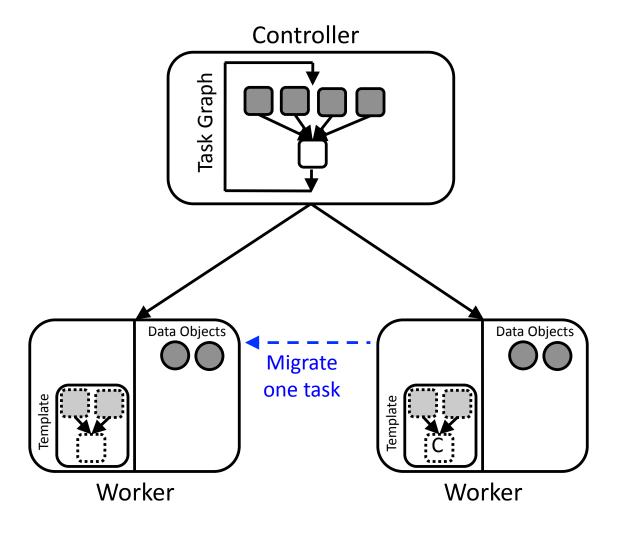
The Devil is in the details.

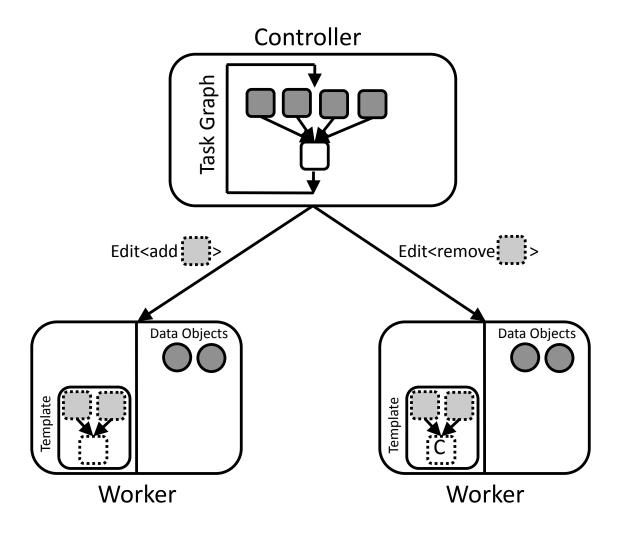
- Caching tasks implies static behavior:
 - Templates and dynamic scheduling?
 - Reactive scheduling changes for load balancing.
 - Scheduling changes at the task granularity.
 - Templates and dynamic control flow?
 - Need to support nested loops.
 - Need to support data dependent branches.

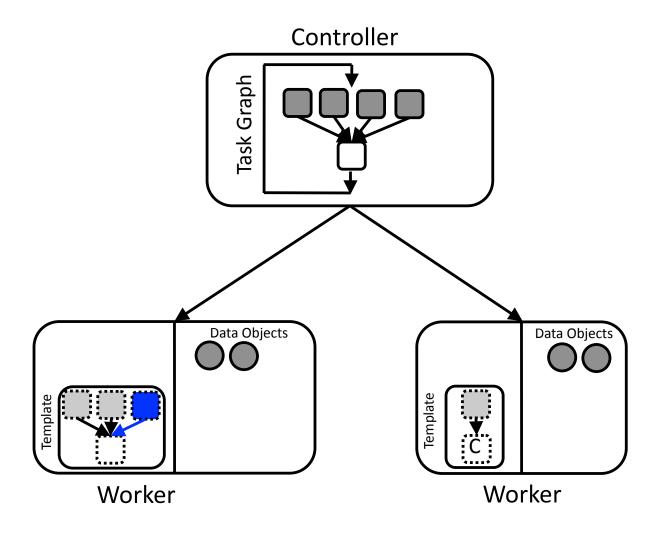
The Devil is in the details.

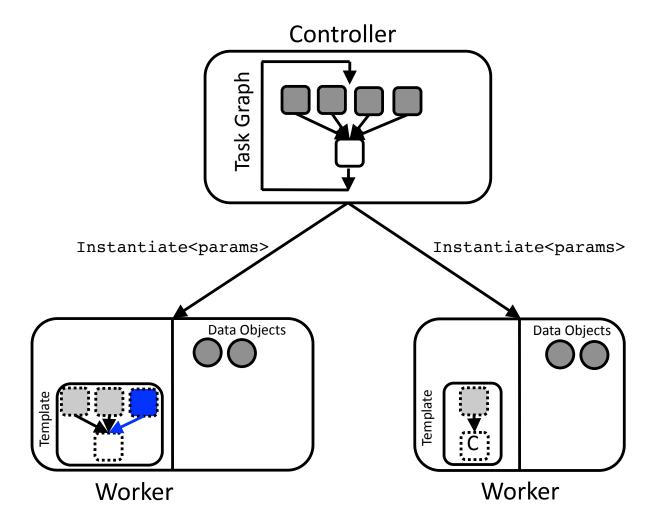
- Caching tasks implies static behavior:
 - Templates and dynamic scheduling?
 - Reactive scheduling changes for load balancing.
 - Scheduling changes at the task granularity.
 - Templates and dynamic control flow?
 - Need to support nested loops.
 - Need to support data dependent branches.

- If scheduling changes, even slightly, the templates are obsolete.
 - For example migrating tasks among workers.
- Instead of paying the substantial cost of installing templates for every changes, templates allow **edit**, to change their structure.
- **Edits** enable adding or removing tasks from the template and modifying the template content, in-place.
- Controller has the general view of the task graph so it can update the dependencies properly, needed by the edits.



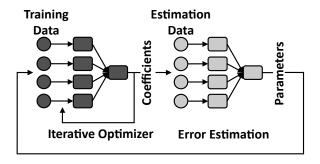


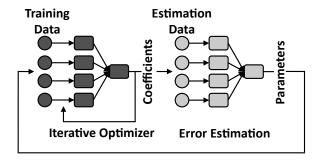




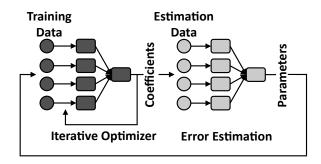
The Devil is in the details.

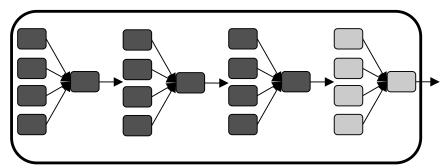
- Caching tasks implies static behavior:
 - Templates and dynamic scheduling?
 - Reactive scheduling changes for load balancing.
 - Scheduling changes at the task granularity.
 - Templates and dynamic control flow?
 - Need to support nested loops.
 - Need to support data dependent branches.



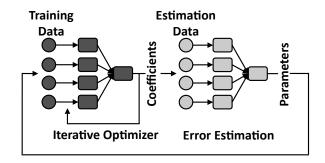


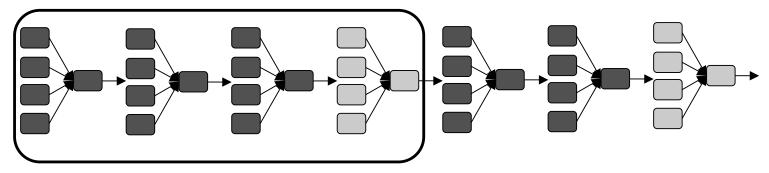
- The more tasks cached in the template the better.
 - The cost of template instantiation is amortized over greater number of tasks.
 - -But **loop unrolling** only works for static control flow.



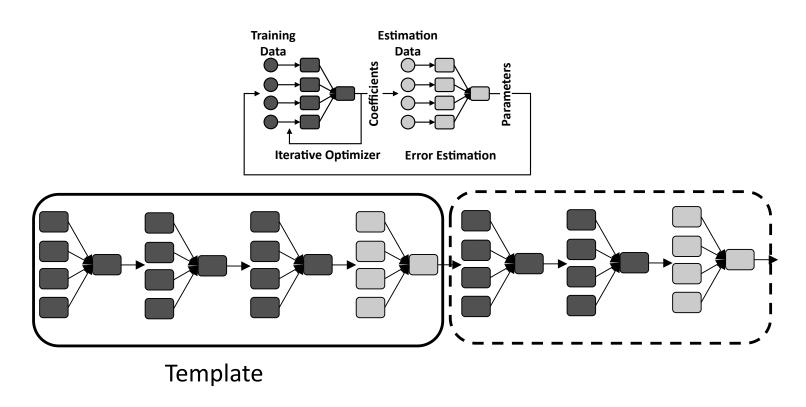


Template

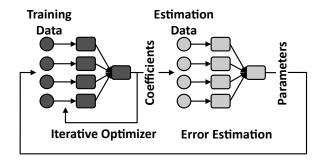




Template

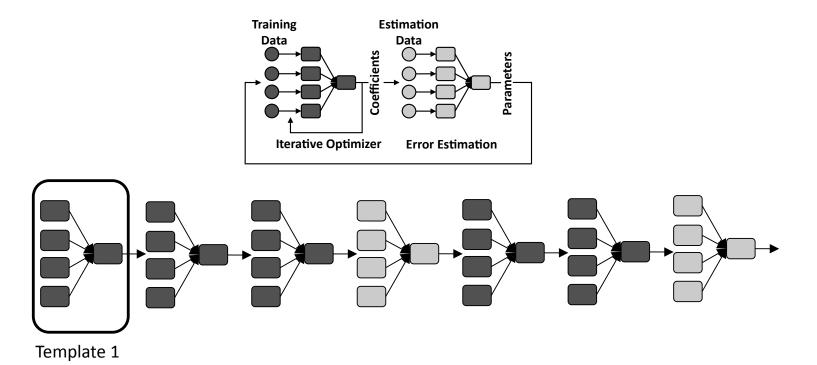


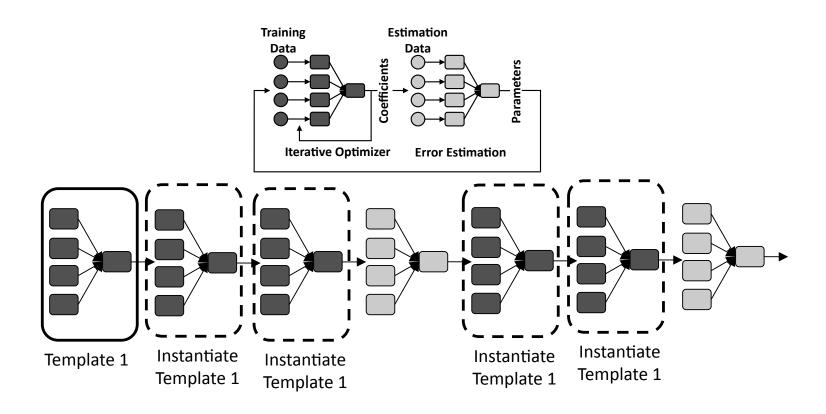
• Cannot reuse the template (only two iterations of the inner loop).

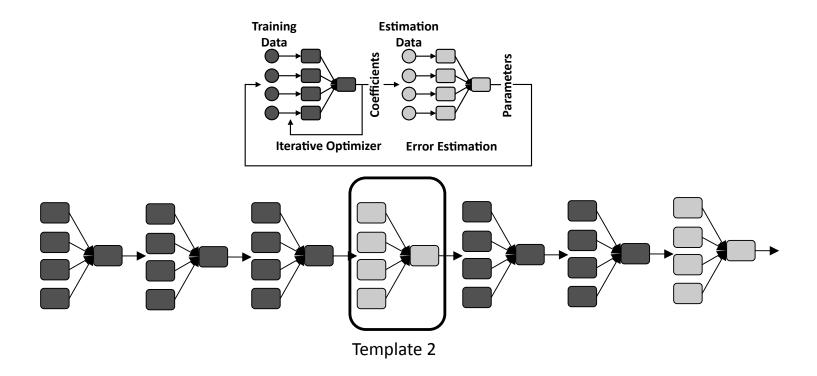


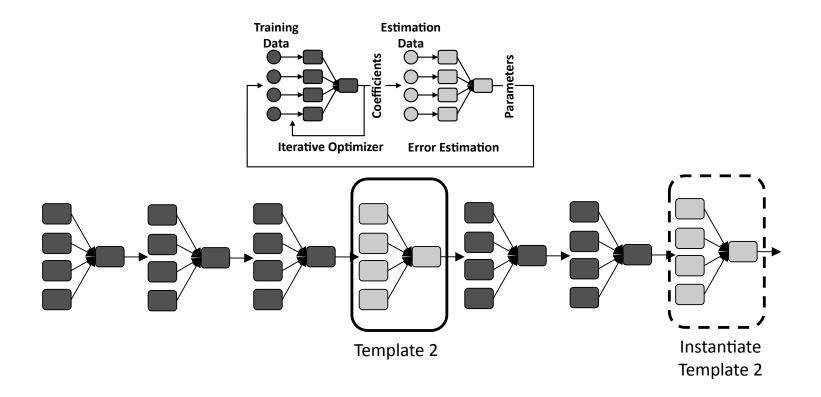
- Templates cannot go beyond a branch in the driver program.
- Execution templates operates at the granularity of basic blocks:
 - A code block with single entry and no branches except at the end.
 - It is the biggest block without sacrificing dynamic control flow.

Granularity

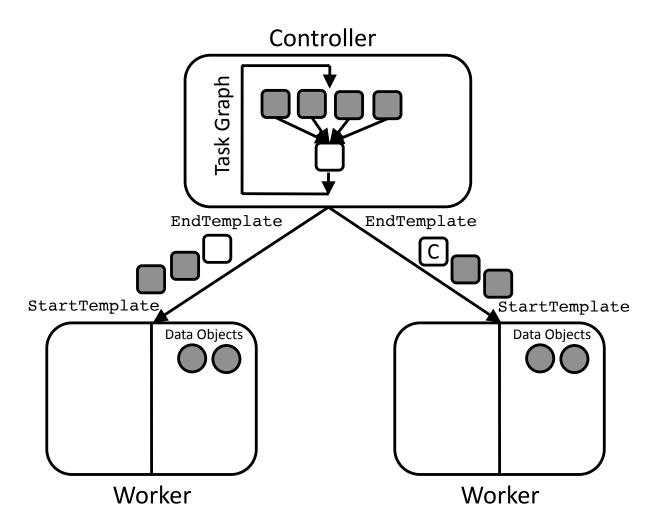




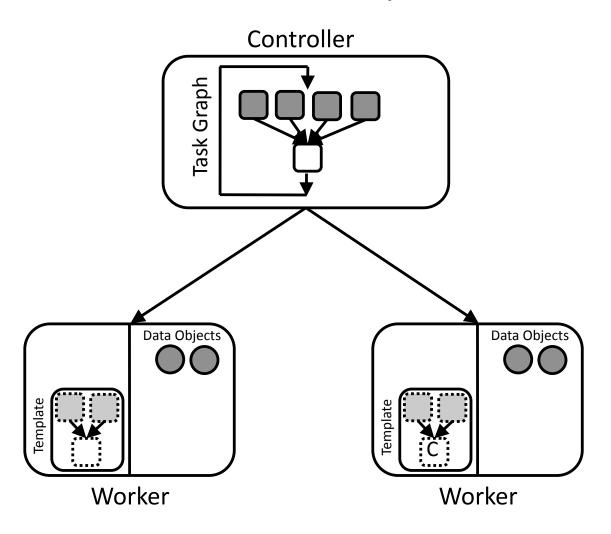


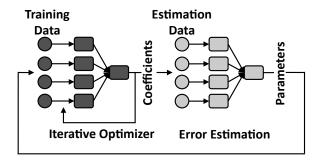


Granularity

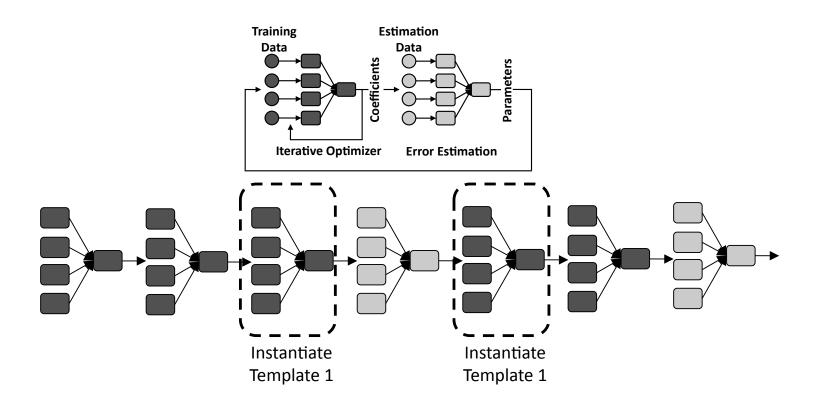


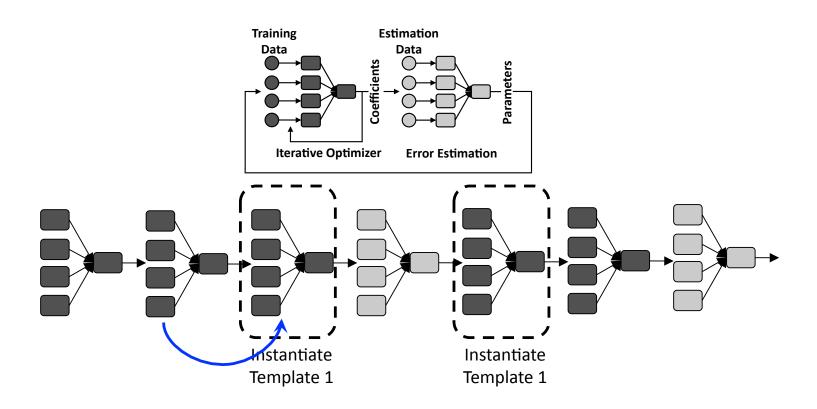
Granularity

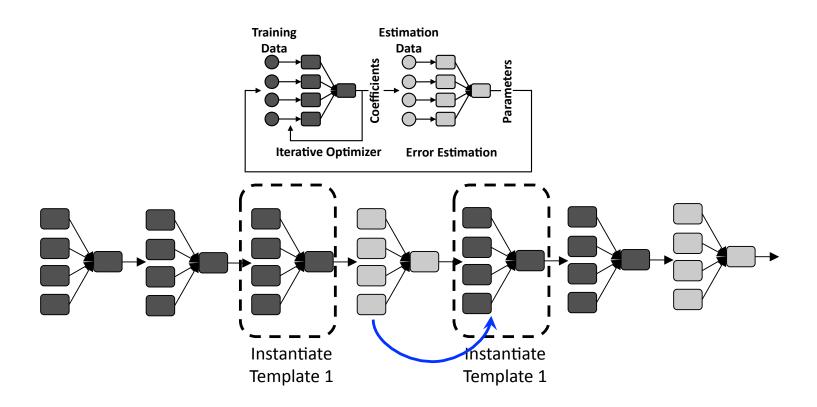


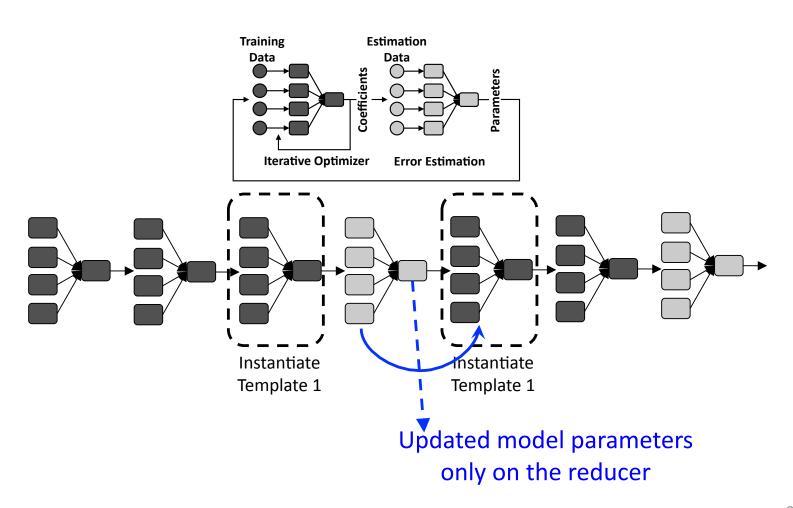


- With dynamic control flow a basic block can have different entries.
- The execution state is not similar in all circumstances.

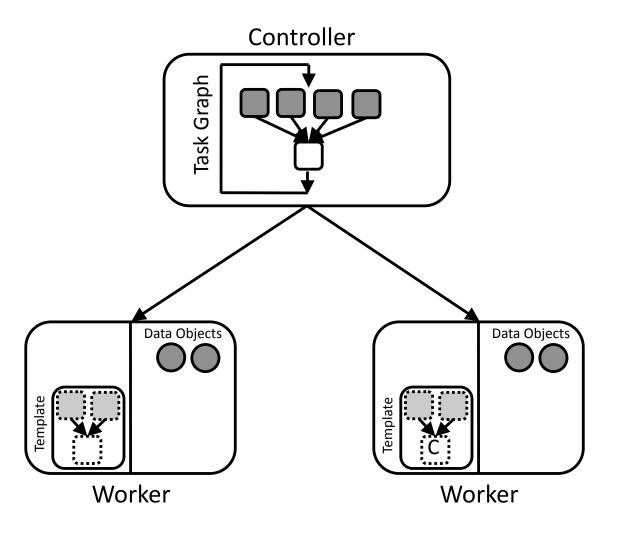


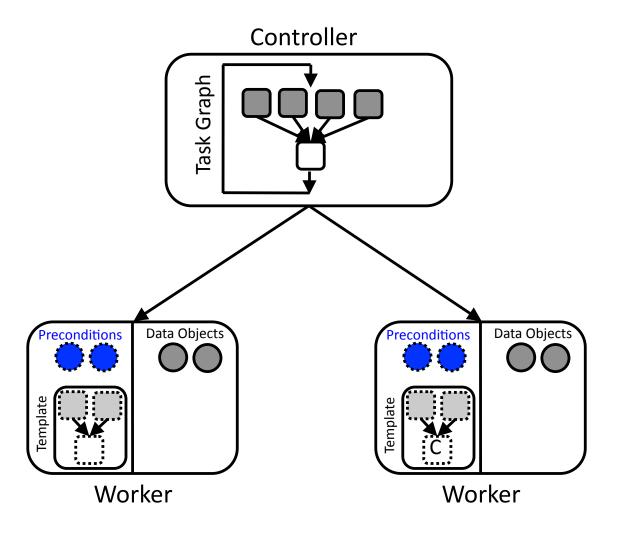




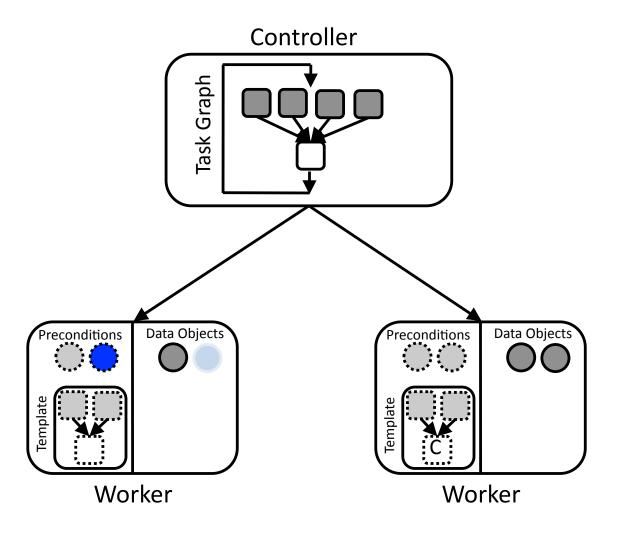


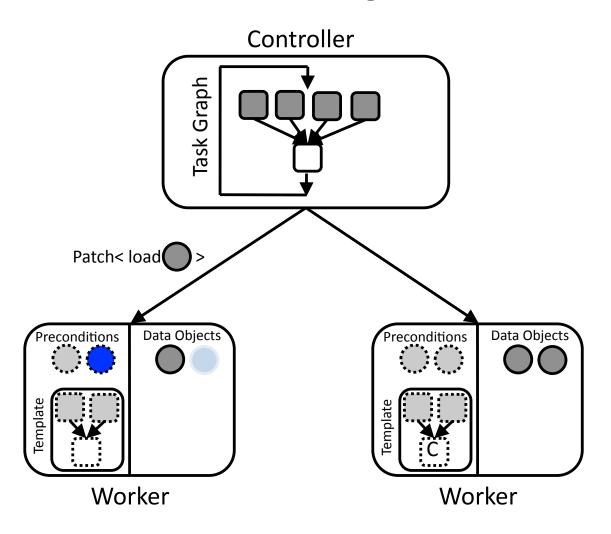
- Each template has a set of **preconditions** that need to be satisfied before it can be instantiated.
 - For example the set of data objects in memory, accessed by the tasks cached in the template.

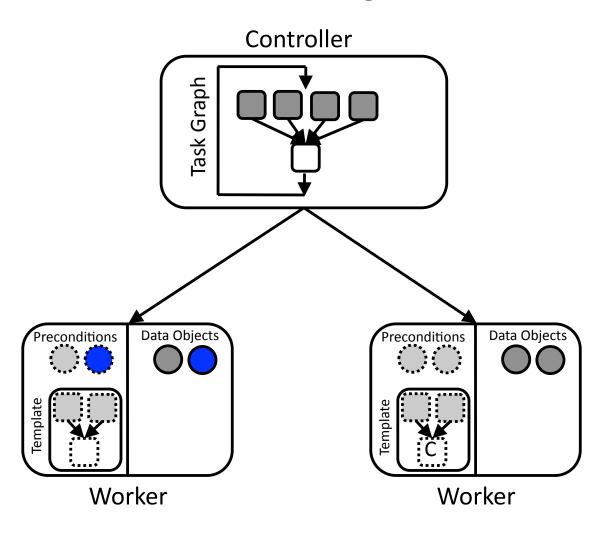


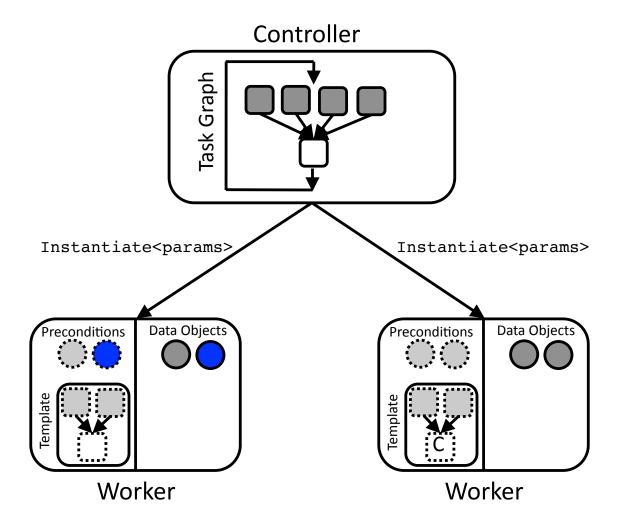


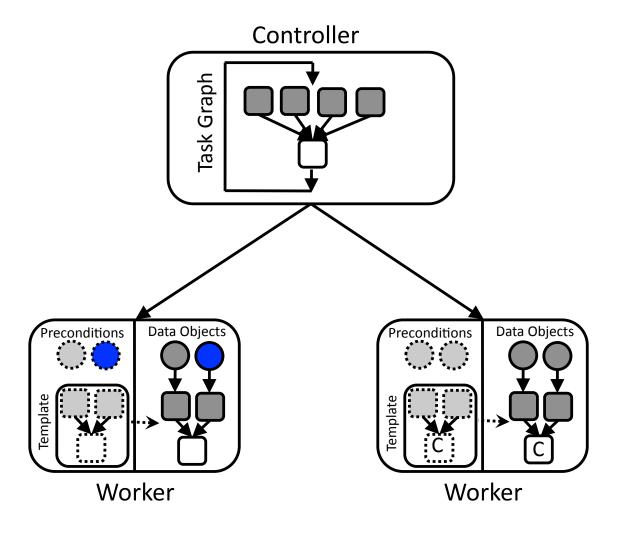
- Each template has a set of **preconditions** that need to be satisfied before it can be instantiated.
 - For example the set of data objects in memory, accessed by the tasks cached in the template.
- Worker state might not match the preconditions of the template in all circumstances.
- Controller **patches** the worker state before template instantiation, to satisfy the preconditions.











Execution Templates Mechanisms Summary

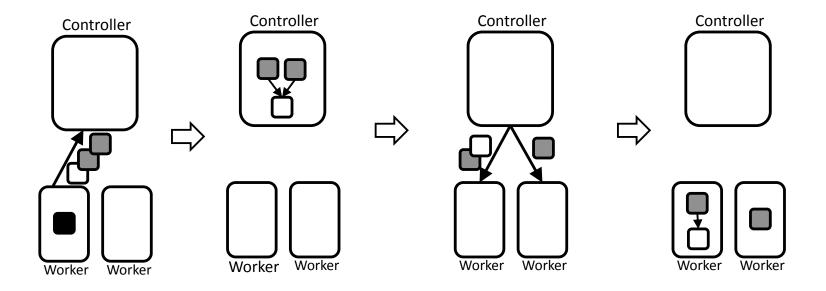
- **Instantiation**: spawn a block of tasks without processing each task individually from scratch. It helps increase the **task throughput**.
- Edits: modifies the content of each template at the granularity of tasks. It enables fine-grained, dynamic scheduling.
- Patches: In case the state of the worker does not match the preconditions of the template. It enables dynamic control flow.

This talk

- Control Plane: the Emerging Bottleneck
- Design Scope of the Control Plane
- Execution Templates
- Nimbus: a Framework with Templates
- Evaluation

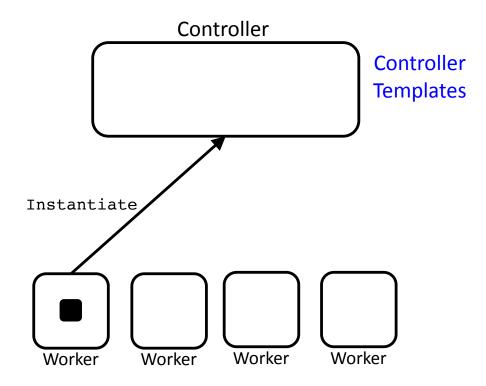
- Nimbus is designed for low latency, fast computations in the cloud.
 - Implemented in C++ (the core library is ~35,000 semicolons).
 - Mutable data model to allow in-place operations.
- Nimbus embeds execution templates for its control plane.
 - The centralized controller allows dynamic scheduling and resource allocation.
 - Execution templates help deliver high task throughput at scale.
- Nimbus supports traditional data analytics as well as Eulerian and hybrid graphical simulations; for the first time in a cloud framework.
 - Supervised/unsupervised learning algorithms, graph library.
 - PhysBAM library (water, smoke, etc.)

Control Flow

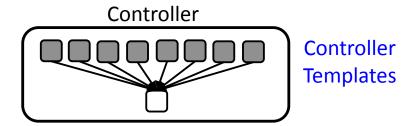


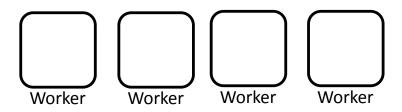
- Tasks spawn other tasks for execution (similar to Legion).
- Driver program is a lineage of tasks executing on the workers.
- More flexible DAG for the task graph.
 - Not just narrow and wide dependencies.
 - Needed for graphical simulations.

Controller and Worker Templates

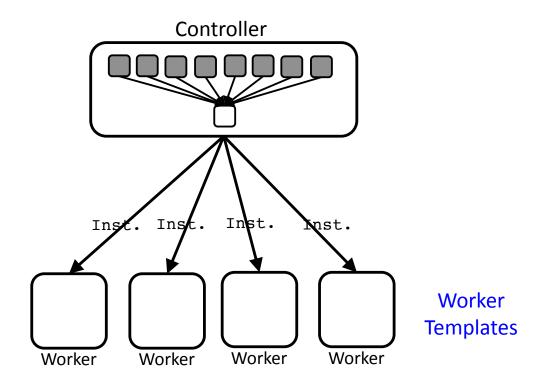


Controller and Worker Templates

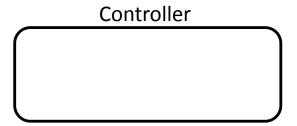


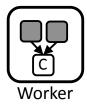


Controller and Worker Templates



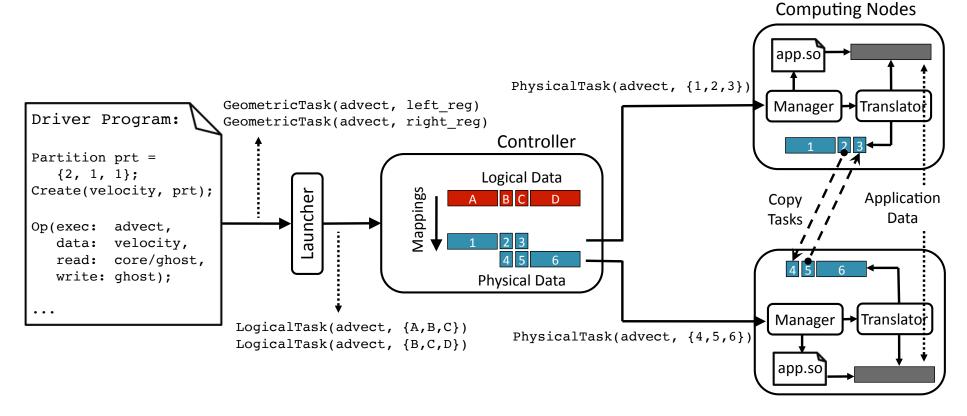
Controller and Worker Templates





Worker Templates

Graphical Simulations



- The goal is to automatically distribute sequential library kernels.
- Four layer data abstraction (geometric, logical, physical, application).
- Automatic translation and caching between the data layers.

• For more information you can visit Nimbus website.

This talk

- Control Plane: the Emerging Bottleneck
- Design Scope of the Control Plane
- Execution Templates
- Nimbus: a Framework with Templates
- Evaluation

Results Summary

Control plane task throughput:

 Execution templates match the strong scaling performance of frameworks with distributed control plane design.

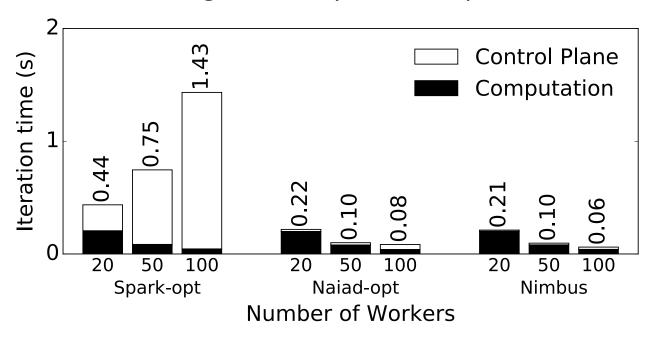
Dynamic scheduling:

 Execution templates allows low cost, reactive scheduling and dynamic resource allocation similar to a centralized frameworks.

• Dynamic control flow:

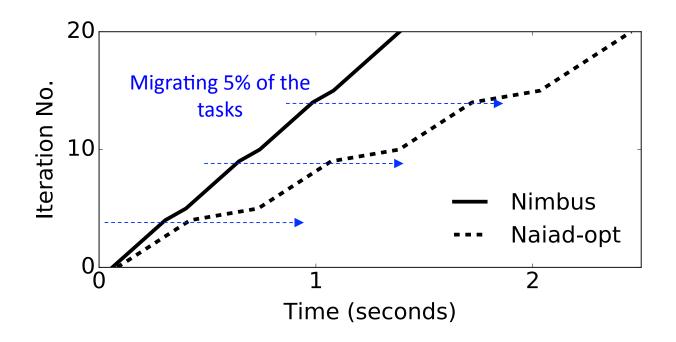
 Execution templates can handle applications with nested loops and data dependent branches with low overhead.

Strong Scalability with Templates



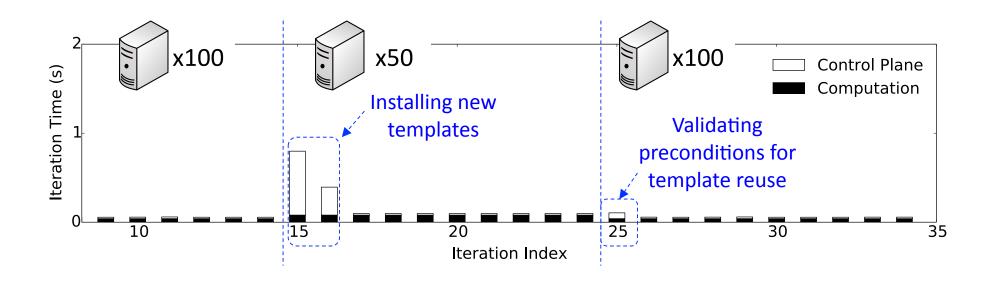
- Logistic regression over data set of size 100GB.
- Spark-opt and Naiad-opt, runs tasks as fast as C++ implementation.
- Nimbus centralized controller with execution templates matches the performance of Naiad with a distributed control plane.

Reactive, Fine-Grained Scheduling with Templates



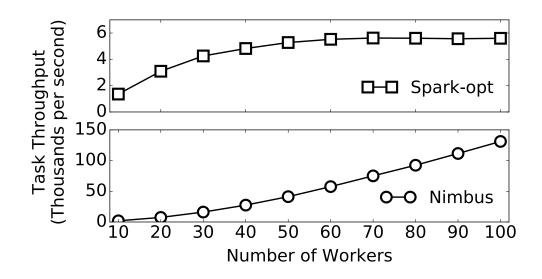
- Logistic regression over data set of size 100GB, on 100 workers.
- Naiad-opt curve is simulated (migrations every 5 iterations).
- Execution templates allow low cost, reactive scheduling changes through edits at task granularity.
 - Single edit overhead is only 41µs (in average).

Dynamic Resource Allocation with Templates



- Logistic regression over 100GB of data, on 50/100 workers.
- One-time template installation cost is ~40% of direct task scheduling.
- Nimbus allows dynamic resource allocation.
- Nimbus installs multiple versions of a template depending on resources.

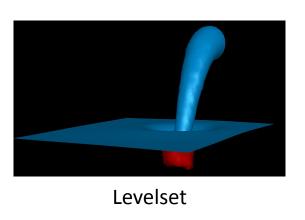
High Task Throughput with Templates

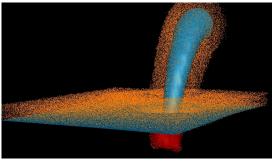


- Spark and Nimbus both have centralized controller.
- Nimbus task throughput scales super linearly with more workers.
 - O(N²): more tasks and shorter tasks, simultaneously.
- For a task graphs with single stage:
 - Instantiation cost is $<2\mu s$ per task (500,000 tasks per second).

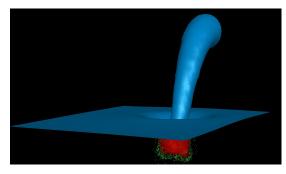
Graphical Simulations Distributed in Nimbus

Complexities of Graphical Simulations

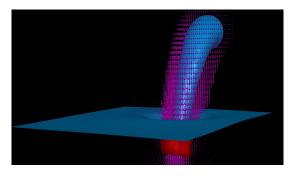




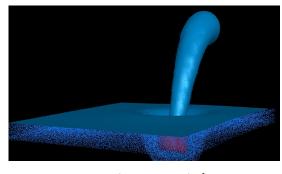
Positive Particles



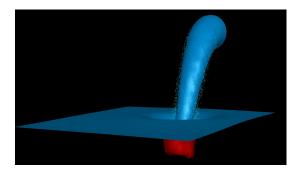
Positive Removed Particles



Velocity



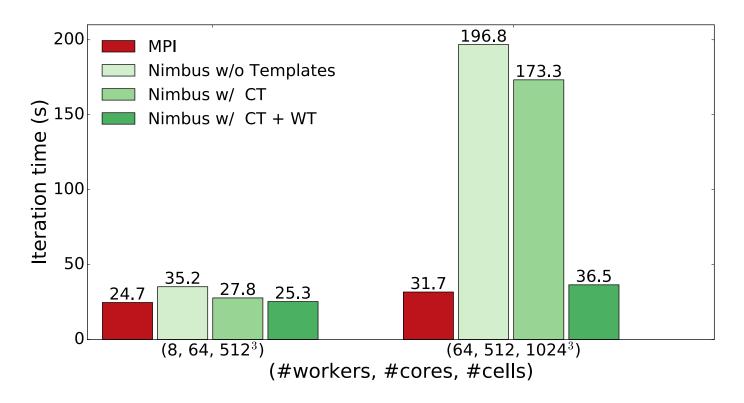
Negative Particles



Negative Removed Particles

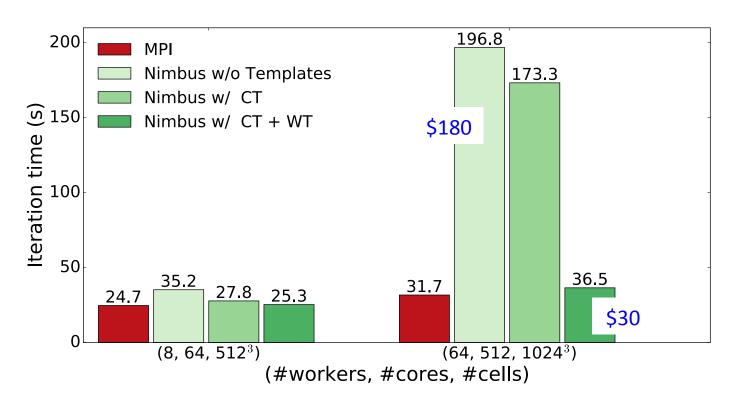
- 40 different variables: scalar, vector, particle.
- Triply nested loop with data dependent branches.
 - 9 different templates (basic blocks).
 - 3 branches that need patching.

Speedup with Templates



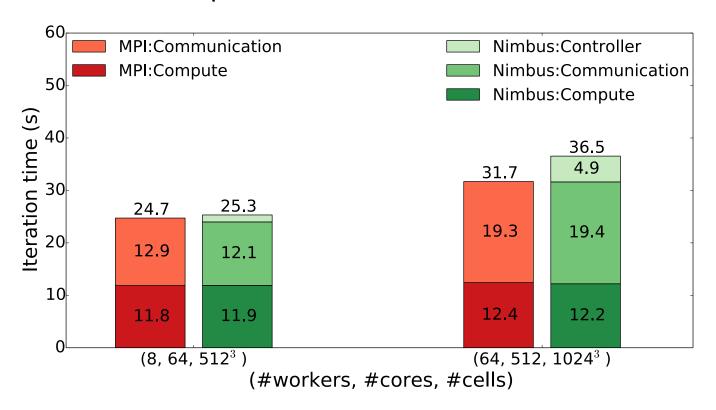
- Canonical water simulations under Nimbus and MPI.
- Without templates, Nimbus is almost 6x slower than MPI.
- Slow down means either lower resolution or more time/money.

Speedup with Templates



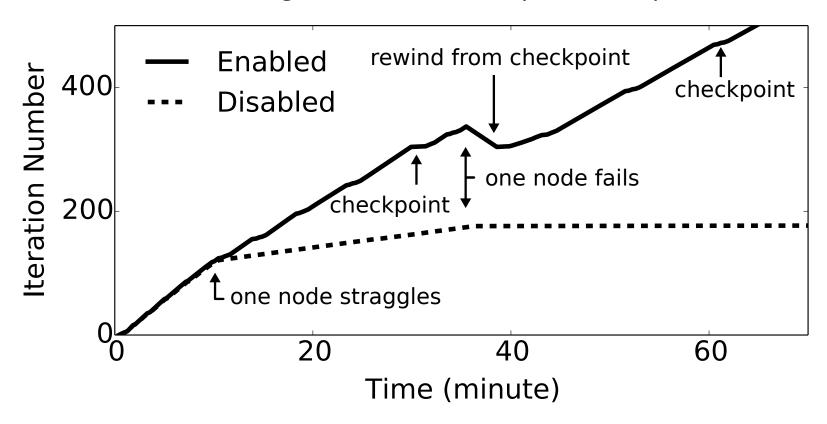
- Canonical water simulations under Nimbus and MPI.
- Without templates, Nimbus is almost 6x slower than MPI.
- Slow down means either lower resolution or more time/money.

Comparison with Hand-Tuned MPI



- Canonical water simulations under Nimbus and MPI.
- Nimbus performance is within 3-15% of the hand-tuned MIP.
- At 512 cores, there are more than 1 million distinct data objects and task throughput picks at 460,000 tasks per second.

Load Balancing and Fault Recovery with Templates



- Nimbus controller adapts to the stragglers and worker failures.
- Templates are seamlessly installed as schedule changes.

Contributions

- Demonstrating how the **control plane** is the emerging **bottleneck** for data analytics frameworks.
- Execution Templates as an abstraction for the control plane of cloud computing frameworks, that enables orders of magnitude higher task throughput, while keeping the fine-grained, flexible scheduling.
- The design, implementation, and evaluation of **Nimbus**, a distributed cloud computing framework that embeds execution templates.
- A demonstration of a single-core graphical simulation that Nimbus automatically distributes in the cloud showing execution templates in practice for complex applications.

Conclusion

Control Plane Design	Example Framework	Task Throughput	Task Scheduling
	MapReduce		
Centralized	Hadoop	Low	Dynamic
	Spark		
Distributed	Naiad	High	Static
	TensorFlow		
Centralized w/ Execution Templates	Nimbus	High	Dynamic

Thank You!