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Uniquely Decodable Codes with Fast Decoder for Overloaded
Synchronous CDMA Systems
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Abstract—In this paper, we introduce a new class of signature
matrices for overloaded1 synchronous CDMA systems that have
a very low complexity decoder. While overloaded systems are
more efficient from the bandwidth point of view, the Maximum
Likelihood (ML) implementation for decoding is impractical
even for moderate dimensions. Simulation results show that the
performance of the proposed decoder is very close to that of
the ML decoder. Indeed, the proposed decoding scheme needs
neither multiplication nor addition and requires only a few
comparisons [1]. Furthermore, the computational complexity and
the probability of error vs. Signal to Noise Ratios (SNR) are
derived analytically.

Index Terms—

I. INTRODUCTION

CODING schemes for overloaded synchronous Code Di-
vision Multiple Access (CDMA) originates from [2].

These codes have fewer chips than the number of users
and use relatively fast recursive decoders. Nevertheless, the
decoder fails to work in noisy environments, which is an
intrinsic characteristic of any CDMA system. While some
other overloaded codes have been proposed in [3]-[6], they are
all designed for noiseless channels. In fact, in noisy channels,
they need an ML decoder to determine the received vector, a
process which is NP-hard.

Recently, in [7] and [8], a class of binary matrices for
overloaded CDMA systems with simplified ML decoders have
been proposed. Moreover, some overloaded matrices with
finite signature alphabets are introduced in [9], for which a
simplified ML decoder proposed in [7] is applied.

In this paper, we introduce a recursive matrix construction
method for highly overloaded synchronous CDMA systems.
While the overloading factor2, β, increases for a sequence
of these matrices, they remain uniquely decodable. Moreover,
they are designed so that the user data can be extracted at
the receiver end with a very simple decoder which uses only
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1Overloaded CDMA implies that the number of users is greater than the

number of chips.
2Overloading factor is defined to be the number of users divided by the

number of chips.

a few comparisons. Although this decoder has much lower
complexity than the ML one, its performance is almost as
good as the performance of the ML decoder [1]. These novel
matrices are called Logical Signature Matrices (LSM).

Section II proposes the LSMs and their corresponding recur-
sive matrix construction method. In section III, the fast logical
decoder is introduced. Section IV considers analytical results
for the probability of error and computational complexity.
Simulation results are discussed in section V. Conclusions and
future studies are in section VI.

II. LOGICAL SIGNATURE MATRIX (LSM)

In a synchronous CDMA system, each user multiplies an
allocated chip by its data and sends it through the channel.
These vectors from different users are added up in the channel
and the noisy sum reaches the receiver end. In a system with
n users and m chips, let Sm×n be a signature matrix where
the columns are the user vectors. Thus, this kind of CDMA
can be modeled as

Ym×1 = Sm×nXn×1 +Nm×1 (1)

where X is a column vector containing user data, N is the
channel noise vector, and Y is the the vector at the receiver
end. In (1), it is assumed that there is a perfect power control.
Now, let us define an LSM.

Definition 1: Let {λ1, λ2, . . . , λj} be a set of j alge-
braically independent numbers3 and λ̄ be a linear combination
of λis. In the following, it is assumed that the set of M input
symbols Ψ = {ξ1, . . . , ξM} is a subset of {λ1, λ2, . . . , λj , λ̄}.
In addition, let Ŷ(m−1)×1 = Ŝ(m−1)×nXn×1, where Ŝ is
derived by eliminating one of the rows of Sm×n.
Sm×n is said to be LSM over the input set Ψ, if the

following constraints hold:

1) S is one-to-one over Ψ.
2) If the number of different symbols in data vector X is

known, it is possible to decipher the user data from Ŷ
uniquely.

A. Recursive Matrix Construction

Now, we introduce a recursive method for constructing
uniquely decodable codes. Starting from an LSM, S 1

(m1×n1)
,

the following recursive relation defines a sequence of matrices.
The kth generated matrix Sk is an mk ×nk matrix formed as
follows:

3In an algebraically independent set the linear combinations of the numbers
with integer coefficients cannot become zero.0090-6778/10$25.00 c© 2012 IEEE
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Sk =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

+αk . . . +αk +αk +αk . . . +αk

+βk . . . +βk 0 −βk . . . −βk

0

Ŝk−1 0 0
...

0 0 Ŝk−1

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2)

where mk = 2k−1m1, nk = 2k−1(n1 + 1) − 1, and Ŝk−1

is derived by eliminating the first row of Sk−1; αk and βk

are two arbitrary numbers. It can be seen that the loading
factor increases for the sequence of matrices and approaches
(n1 + 1)/m1 in infinity. In the following theorem, we will
show that the resultant matrices are also LSM.

Theorem 1: By starting from a small m1 × n1 LSM and
by using the recursive algorithm in (2), the resultant sequence
of matrices are also LSM.

Proof : The proof is based on induction on k. Assume that
Sk−1 is LSM and Y = SkX . Let Ψ = {ξ1, . . . , ξM} be the
set of M input symbols as defined in Definition 1 and, N i be
the number of ξi in the data vector Xn×1. It is easy to show
that

M∑
i=1

Ni = n ,

M∑
i=1

Niξi = Y1/αk (3)

Because there are at least M − 1 algebraically independent
ξis, it is possible to find Nis uniquely from (3). On the other
hand, let NFi and NLi be the number of ξi in the first and
last nk−1 elements of X , respectively. Then

M∑
i=1

(NFi −NLi) = 0 ,
M∑
i=1

(NFi −NLi) ξi = Y2/βk (4)

By just the same argument, it can be deduced that
(NFi −NLi) can be determined uniquely from (4). Note thet
If the middle element of X is ξz , then NFi −NLi ≡ Ni − 1
(mod2) if and only if i = z. Thus, it is possible to decipher
the middle element of X , say ξz . Furthermore, NFz +NLz =
Nz − 1 and NFi +NLi = Ni for i �= z.

In summary, from Y1 and Y2, the middle element of X
can be decoded. Moreover, NFis and NLis can be determined
from their sum and difference. Since Sk−1 is LSM, by
considering the second constraint in Definition 1, it can be
seen that Y3, . . . , Ymk

uniquely specify the first and the last
nk−1 elements of X . Hence, Sk is one-to-one over the set Ψ.
Note that, Y1 is not needed for the decoding algorithm but
rather the number of various symbols of X is required. Thus,
the second constraint in Definition 1 also holds and the proof
is complete.�

In the following an example will be provided based on
Theorem 1.

Example 1: It can be easily shown that

S1
2×3 =

[
+1 +1 +1
+1 0 −1

]
(5)

TABLE I
THE FIRST THREE MATRICES IN AN LSM SEQUENCE.

S1
[
+1 +1 +1
+1 0 −1

]
S2

[
+1 +1 +1 +1 +1 +1 +1
+1 +1 +1 0 −1 −1 −1
+1 0 −1 0 0 0 0
0 0 0 0 +1 0 −1

]

S3

⎡
⎢⎢⎢⎣

+1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1
+1 +1 +1 +1 +1 +1 +1 0 −1 −1 −1 −1 −1 −1 −1
+1 +1 +1 0 −1 −1 −1 0 0 0 0 0 0 0 0
+1 0 −1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 +1 0 −1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 +1 +1 +1 0 −1 −1 −1
0 0 0 0 0 0 0 0 +1 0 −1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 +1 0 −1

⎤
⎥⎥⎥⎦

is an LSM. By starting from this matrix, the recursive con-
struction with αi = βi = 1 for i = 1, . . . , k from (2) results
in a sequence of LSM; the first three sequences are given in
Table I. The kth sequence Sk is a 2k× (2k+1− 1) matrix and
the loading factor approaches 2 as k tends to infinity.�

Theorem 1 suggests a recursive mechanism to construct
larger uniquely decodable codes; however, it is not the only
way. One common approach in producing larger matrices is
by leveraging the characteristics of Kronecker multiplication.
For the sake of completeness, it is also considered here as a
Note.

Note 1: Given an invertible matrix Pr×r, and an LSM
Sm×n, then P ⊗ S is also an rm × rn uniquely decodable
matrix. By multiplying the received vector by P−1 ⊗ I from
the left, r logical decoder can be applied to extract the user
data [7].

LSMs have a quality that they can be decoded with a very
simple decoder. In the next section, their fast logical decoder
will be explained.

III. THE PROPOSED FAST LOGICAL DECODER

We describe the proposed algorithm for fast decoding by
considering a system that uses {±1} as the input symbols
and the ternary class of LSMs based on Example 1 as the
encoder (Table I shows the first three matrices).

We first explain the decoder of S1. In the case that Y =
[y1, y2]

T and X̂ is the decoded data, the decoding scheme has
the following steps:

Step 1: Pass y1 to a quaternary Analog to Digital Converter
(ADC) with constellation of {±1,±3}. The output of this
decoder z shows the number of +1s and −1s in X̂ . If z = +3
or z = −3, then X̂ consists purely of +1s or −1s, respectively,
and the process is terminated. Otherwise, the process goes to
the next step.

Step 2: Based on y2 and z, the decoding continues as
follows:

• If z = +1, then X̂ contains exactly one −1. By passing
y2 to a ternary ADC with constellation of {0,±2}, it can
be determined which user has sent this −1.

• If z = −1, then X̂ contains exactly one +1. By passing
y2 to a ternary ADC with constellation of {0,±2}, it can
be determined which user has sent this +1.

Now, for Sk, k ≥ 2, the decoding scheme is recursive. As
is depicted in Fig. 1, there are three main steps:

Step 1: Pass y1 to a (2k+1)-ary ADC with a constellation of
{±1,±3,±(2k+1 − 1)}. The output of this decoder z shows
the number of +1s and −1s in X̂ . If z is +(2k+1 − 1) or
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Fig. 1. The proposed logical decoder for Sk , k ≥ 2.

−(2k+1−1), then the process is terminated and X̂ is composed
purely of +1s or −1s, respectively. Otherwise, the process
moves to the next step.

Step 2: Pass y2 to a (2k+1−|z|)-ary ADC with a constella-
tion of {0,±2,±(2k+1 − 1− |z|)}. By combining the output
information of this decoder and the knowledge about the total
number of −1s and +1s in X̂ , from the argument in proof of
Theorem 1, the 2k

th
entry of X̂ (the middle element) can be

deciphered. Moreover, one may determine the number of +1s
and −1s in the first and last 2k − 1 entries of X̂ , denoted by
nl and nr, respectively.

Step 3: Apply the decoder of Sk−1 with the inputs of

Yl =

⎡
⎣

2k+1−1−2nl
y3

...
y
2k−1+1

⎤
⎦ and Yr =

⎡
⎢⎣

2k+1−1−2nr
y
2k−1+1

...
y
2k

⎤
⎥⎦ (6)

to identify the first and the last 2k − 1 entries of X̂ .
It is a straightforward extrapolation to extend this method

for an M-ary input system. In addition, for any other sequence
of matrices, we should just modify the decoder of S1 and the
recursive algorithm remains the same.

In the following section, the analytical performance of
this decoder is considered. Specifically, the probability of
incorrect decoding and computational complexity are derived.
Moreover, we discuss the fairness of these codes.

IV. PERFORMANCE ANALYSIS

In this section, the analytical performance of the logical
decoder is discussed. In the following, we consider the binary
input system with entries of {±1} and encoding matrices
based on Example 1 (see Table I); although, all the results
and statements are also applicable to the M-ary input case
and any other set of matrices.

Assume that the system uses Sk and the standard deviation
of the channel noise is σ. Let P k

c (σ) be the probability
of decoding the received vector correctly using the logical
decoder (i.e., P (X̂ = X)). For simplicity, we define

Eσ = 0.5 +Q(1/σ) and Dσ = 2Q(1/σ) (7)

where Q(x) =
∫ x

0
1√
2π

e−t2/2dt. Hence,Eσ is the probability
of correctly decoding one of the end points in the one dimen-
sional constellation of the ADC, and Dσ is the probability of
correctly decoding one of the middle points.

Let us start by calculating P 1
c (σ). Since the inputs are

equally likely, one reasonable approach would be to average

over all possible input vectors. However, since the decoder is
symmetric over ±1s, one can only consider half of the cases.
Specifically, consider the input vectors with no or a single
−1 entry (the compliment case would be the vectors with
no or a single +1). In addition, the probability of correctly
decoding [−1,+1,+1]

T or [+1,+1,−1]
T would be DσEσ ,

since both of them are middle points in the first ADC and end
points in the second ADC. By exactly the same argument, the
probability of correctly decoding [+1,+1,+1]T (it does not
need the second ADC) and [+1,−1,+1]

T would be Eσ and
D2

σ , respectively. Putting these things together, we will have

P 1
c (σ) =

1

4
[Eσ +Dσ(Dσ + 2Eσ)] (8)

We can expand this approach to the general case. Specif-
ically, for any k ≥ 2, by classifying different input vectors
and by considering the recursive form of the logical decoder,
it can be deduced that

P k
c (σ) =

1

22(k+1)−2

[ 1︷︸︸︷
Eσ +

2︷ ︸︸ ︷
Dσ(Dσ + 2Eσ) (9)

+

3︷ ︸︸ ︷
4Dσ(Eσ +Dσ)P̂

k−1
c + 4(DσP̂

k−1
c )2

]

where

P̂ k−1
c (σ) =

1

Dσ

[
2(2

k−2)P k−1
c (σ)− Eσ

]
(10)

is the modified version of the P k−1
c (σ) by excluding the

terms resulted from the first ADC in the calculations. This
modification comes from the fact that when the recursive
decoder applies the previous step decoder, it already knows the
number of different symbols in each sub vector, and thus the
first ADC is not needed anymore. Also, it is worth mentioning
that in(9)

• We are averaging over half of the cases ( 22
(k+1)−1

2 =

22
(k+1)−2) due to symmetric behavior of the decoder. In

this case, all inputs with at most (2k − 1) entries of −1.
• The first term takes into account the pure +1 input vector,

which only needs the first ADC.
• The second term represents three cases; the vector with

only one -1 as the middle element and the two vectors
with all -1 in the first or last (2k − 1) entries.

• The last term aggregates all other situations, when the
right sub decoder, the left sub decoder, or both of them
are needed for the decoding of the input.

Now, let us take a look at the computational complexity of
the proposed scheme. Interestingly enough, the logical decoder
needs neither any multiplications nor any additions; it only
requires a few comparisons with respect to the thresholds of
the one dimensional ADC. Let Ck be the average number of
comparisons used by the decoder of Sk. Simply, C1 = 7+4

4 =
2.75 (it becomes more clear shortly). In order to give a general
relation for Ck, let us define a couple of factors.

Fk =

2k−1∑
i=0

{(
2(k+1)−1

i

)
(i+ 1)

}
(11)
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Sk =

1︷ ︸︸ ︷
2k−1∑
i=1

{(
2k−1
� i−1

2 �
)2

(i+ 1) (12)

+

2︷ ︸︸ ︷
2

� i−1
2 �∑

j=0

(
2k−1

j

)(
2k−1
i−j

)
(2j + 1)

+

3︷ ︸︸ ︷
2

� i−2
2 �∑

j=0

(
2k−1

j

)(
2k−1
i−j−1

)
(2j + 2)

}

Lk =

1︷ ︸︸ ︷
4(22

k−1 − 2) (13)

+ 2×

2︷ ︸︸ ︷
2k−1∑
i=2

{(
2k−1

� i−1
2 �

)2

+ 2

� i−1
2 �∑

j=1

(
2k−1

j

)(
2k−1
i−j

)

+

2︷ ︸︸ ︷
2

� i−2
2 �∑

j=1

(
2k−1

j

)(
2k−1
i−j−1

)}

In fact, Fk is the number of comparisons that may be needed
in the first ADC for all possible input vectors. The key point
here is that if an input vector contains i, −1s, then it would
be the ith point in the constellation of the first ADC, and
thus needs (i+1) comparisons in the first step. Note that due
to symmetry, only half of the cases are considered and thus,
the dummy variable i iterates over the number of −1’s in the
input vector up to (2k − 1). By exactly the same argument,
Sk is related to the number of comparisons needed in the
second ADC by classifying the input vectors to three different
groups; those which are symmetric, those with the middle
entry equals to +1, and those with −1 as the middle entry.
The main point here is that each of these groups lies in a
different position in the constellation and hence needs different
number of comparisons on the second step. The last term, L k,
shows the number of times the previous step decoder is called.
The first term in this expression takes into account the input
vectors which may need either the left sub decoder or the
right sub decoder, but not both. On the other hand, the second
term counts the inputs which may need both left and right
sub decoders and thus, they double the number of calls (the
coefficient 2 before it).

All in all, we could obtain the following relation in general
for any k ≥ 2

Ck =
1

22(k+1)−2

[
Fk + Sk + Lk × Ĉk−1

]
(14)

where

Ĉk−1 =
1

2(2k−2) − 1

[
2(2

k−2)Ck−1 − Fk−1

]
(15)

is the modified version of the Ck−1 by excluding the number
of comparisons resulted from the first ADC in calculations.
The reason of the ” − 1” in the denominator of (15) is that

TABLE II
COMPUTATIONAL COMPLEXITY OF THE LOGICAL AND ML DECODERS OF

LSM WITH SIMPLIFIED ML DECODER OF GCO. ALL MATRICES ARE
TERNARY.

Matrix Decoder (2 × 3) (4× 7) (8× 15)

Mul.+Add. None None None
LSM Logical

Comparisons 2.75 7.86 21.30

Mul.+Add. 24 896 491520LSM ML
Comparisons 7 123 32768

Mul.+Add. 18 280 17280
GCO ML

Comparison 1 7 63

we should exclude the pure +1 vector from averaging since
it only uses the first ADC. Now, it is easier to justify the
previously mentioned value for C1 since one can see F1 = 7,
S1 = 4, and it does not call any sub decoder.

It is worth to classify users based on the number of ±1s in
their allocated vectors (columns of the matrix). From this point
of view, a system using Sk contains k+1 different groups of
users, say Ai, i = 1, . . . , k+1. In the ith group, there are 2i−1

users with i number of ±1s in their allocated vector. Because
of symmetry in the matrices and their decoders, all users in
the same group manifest the same BER in a noisy channel.
Moreover, let εi be the BER of a user in the ith group; then

ε1 > ε2 > · · · > εk+1 (16)

In other words, although the users with the greater number
of ±1s in their allocated vector spend more power for data
transmission, they take the advantage of a more reliable
communication (i.e., lower BER).

We prove (16) for k = 1. ε1 is the probability of deciding in
favor of [x,−1, x]T when [x,+1, x]T is transmitted and vice
versa. On the other hand, ε2 is the probability of deciding in
favor of [−1, x, x]T when [+1, x, x]T is transmitted and vice
versa. While ε1 and ε2 are equally likely for the first ADC, ε1
is more probable for the second ADC. In fact, the existence
of 0 in the second column of S1 makes the distance between
the received vectors in the form of [x,−1, x]T and [x,+1, x]T

shorter than that of the other pair. The same arguments holds
for any k ≥ 2, in a recursive manner.

In the next section, the BER of the logical decoder is
compared to the ML one. Moreover, the performance of LSM
with the logical decoder is compared to GCO [9], for which
a simplified ML decoder has been proposed.

V. SIMULATION RESULTS

In this section, a BPSK system with different values of
Eb/N0 is simulated. Note that the LSMs are those proposed
in Table I and input symbols are {±1}. Fig. 2 compares the
BER of the proposed logical decoder versus the ML one for
the first three LSMs. The first two rows of Table II show the
computational complexity of these decoders. While the ML
decoder is rather complex, the logical decoder requires only
a few comparisons. Nevertheless, the performance of the ML
decoder is slightly better than the logical one.

Fig. 3 shows the BER for three different groups of users in
a system using S2. As one can observe, the more the energy
per bit, the less the BER of the user becomes, as in (16).
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Fig. 2. Comparison of the BER vs. Eb/N0 for the proposed logical and
ML decoders for the three LSMs described in Table I.
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Fig. 3. The BER for different groups of users in a system using S2.
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Fig. 4. Comparison of the BER vs. Eb/N0 for the system using LSM
with the proposed logical decoder and the one using GCO with ML decoder.
Simulations have been performed for the three LSMs in Table I and GCOs
with the same size.

We have also simulated systems using GCOs of the same

size with {0,±1} entries [9]. It is noteworthy that the (2× 3)
GCO is the same as S1. Fig. 4 shows the results. Although
GCO has a simplified ML decoder, it is more complex than
the logical decoder (see Table II). In addition, the BER of the
LSM with the logical decoder becomes better for moderate
values of Eb/N0.

Please note that, decoding an overloaded system is a general
problem of solving a set of underdetermined linear equation,
which has been considered extensively in the literature. How-
ever, these decoders has way worse performance than the ML
decoder. For example, one of the best known non-ML decoder
is the iterative decoder which is still way more complex than
our decoder and has a poor performance from BER point of
view[7].

VI. CONCLUSIONS AND FUTURE STUDIES

In this paper, we have introduced a class of M-ary matrices
for overloaded synchronous CDMA systems. These matrices
are constructed recursively and while the overloading factor
increases for the sequence of these matrices, they remain
uniquely decodable. Moreover, the decoding is very fast and
requires few comparisons without any multiplications or ad-
ditions. Simulation results confirm good performance of these
types of decoders.

Finding optimum matrices from BER or channel capacity
points of view and compatible with the proposed decoder
would be valuable for future studies. Extending this method
for asynchronous CDMA systems would be another worth-
while research project.
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