
1

Packet Classification in Presence of Wildcard Expressions
EE384X Course Project

Omid Mashayekhi, and Vaibhav Chidrewar

Abstract— Most conventional packet classifiers fail to work
when both rules and keys contain wildcard expressions. More-
over, usually they find only the highest priority filter that matches
the incoming packet. However, new networking applications such
as network analyzers, intrusion detection systems, and load
balancers, depend on generalized expressions for rules and keys
using wildcards, and require all (or the first few) matching filters
during classification. The most commonly proposed hardware
based solutions to multi-match classification are TCAM based
and, as a result, suffer from several disadvantages such as higher
cost, power consumption, and inflexibility. This paper introduces
a software based algorithm which is memory efficient, does
not need expansion for rules and keys containing wildcards, is
scalable, and provides multi-match results.

I. INTRODUCTION

PACKET classification is the fundamental building block
of nowadays networking systems. In fact, we are almost

at a turning point in designing data networks. While, hardware
based packet switches with specialized software on them has
been dominant approach in practical designs for the past few
decades, we are at a turning point that Software Defined
Networks (SDN) and programable switches are becoming
more interesting in the industry. There are lots of advantages
that expedite this new revolution, flexibility of programmable
switches provided by new protocols like OpenFlow [1], novel
network failure detection and analysis like FlowVisor [2] and
Header Space Analysis [3], and facilitating the realization of
innovations in networking research to name a few. In all of
them, packet classification plays a major role.

As there are new practical applications for SDN, there
is an inevitable demand for more generalized abstractions,
and having wildcard expressions in rules and keys is one of
the most common abstractions for flow definition. However,
previous classifiers demonstrate poor performance either from
scalability or manipulation latency points of view, in this
general case. In this paper, we introduce a novel software
based classifier implementation which is scalable and efficient
from memory and latency points of view, in presence of
wildcard expressions.

Next subsection will give a brief review about the related
work. Just after that, it will be discussed why we need a new
classifier and what should be expected.

A. Related Work

There have been lots of efforts to solve this very basic but
important issue in the networking research area. Here we will
just give a brief review of the most important methods.

This report has been prepared as a part of EE384X course project, Spring
2012, Stanford University, Stanford CA. (e-mail: omidm@stanford.edu, vaib-
havc@stanford.edu).

Ternary Content Addressable Memories (TCAMs) have
been adopted to solve the multi-match classification problem
due to their ability to perform fast parallel matching. There
has been extensive research on power and memory efficient
multi-match packet classification algorithms using TCAM [4],
[5], [6], [7]. However, TCAMs are expensive and consume
large amounts of power. They do not scale well in throughput
and power with classifier size. Also, TCAM, being a hardware
based solution, does not offer flexibility for grouping the rules
of a classifier. Such a flexibility is required in applications
like Software Defined Networks where there is need to have
a separate classifier for each network slice being controlled.

TCAM also provides the most straightforward hardware so-
lution to single-match packet classification. However, its high
cost and high power consumption led to extensive research into
several alternative algorithmic solutions and some of them can
be extended to report multi-match results. For example, Grid of
Tries [8] is proposed to solve the two dimension classification
problem. It can be extended for multiple fields with caching
techniques. Other heuristic algorithms like Recursive Flow
Classification (RFC) [9], HiCuts and HyperCuts [11], [10]
work well for real world rule sets for single-match classifi-
cation. However, due to memory inefficiency for multi-match
classification with rules containing wildcards, these heuristic
based solutions need pre-computation for building a decision
tree and are slow to update.

B. Motivation
As stated above, packet classification has been considered

extensively in literature. However, the case when both keys
and rules have wildcard expressions as building blocks has
not been well addressed. In fact, other than exhaustive search
algorithms, there are no other methods with acceptable per-
formance in this general case. Although for specific set of
rules and keys it may be possible to modify some of previous
schemes to make them compatible with special situation, it is
not feasible to reconfigure the classifier every time one rule
is added (deleted) to (from) the system. Specifically, it can
be shown that packet classification in presence of wildcard
expression cannot be generally done with complexity better
than O(N), where N is the number of rules. Following
Theorem addresses this issue.

Theorem 1: Consider the case when both rules and keys
have unknown number of wildcard expression with unknown
positions. It is impossible to design a classifier in general with
complexity better than O(N). In other words, without any
constraint on the rules and keys, it is necessary to compare
the key with all the rules.

Proof : Basically, the relation between a key and a rule
containing wildcard expressions is NOT transitive. Putting it in



2

words, in presence of wildcards, the matching relation between
a key, say K, and a rule, say R1, has no information, in
general, about the relation between K and an other rule R2,
even if the relation of R1 and R2 is known. So, in general, it
is not possible to provide a procedure which compares the key
with only a subset of rules. In other words, the complexity of
the classifier should be at least O(N).�

Inorder to make the Theorem 1 more clear, consider the
following examples.

Example 1: Assume that the headers have length of 2. Let
K = 1X , R1 = X1, and R2 = 01. It is easy to see that K
matches R1, and R1 matches R2. However, K does not match
R2.�

Example 2: Consider the case when key is purely wild-
cards. Then the classifier should return all the rules as possible
matches. In other words, all the rules should be visited once.�

Based on Theorem 1, it seems that for an incoming key
it is necessary to hit all the rules at least once. So, why
should we consider this problem anymore, while the linear
classifier already exists with complexity O(N)? The answer
is that, it may be possible to improve the performance of the
exhaustive search with a wise design that aggregates a set
of manipulations into one straight forward operation of CPU
(e,g. AND operation). Moreover, it is interesting to take the
advantages of the wildcards, instead of being worried about
their uncertain presence.

In this paper, we introduce a novel classifier which operates
at least one order of magnitude faster than ordinary exhaustive
one. In the following section. we will explain the proposed
design and implementation.

The rest of the paper in organized as follows. Next section
introduces the new technique. In section III, we will discuss
the performance of the scheme analytically, and compare
it with ordinary exhaustive search classifier. Moreover, the
simulation results will be provided in this section. Conclusions
and future work is in Section IV.

II. PROPOSED SCHEME

In this section, the novel implementation is introduced.
Firstly, we will make the whole idea more clear by providing
the big picture of the solution. Next, the specific design to
achieve a fast operation will be discussed.

A. The Big Picture

Assume that we have a key, K, and set of rules, S, in the
space of {0, 1, X}L, where L is the number of bits in key/rule.
The goal is to determine which rules match this key in every
bit. In order to find this subset, we are going to divide it into
a simpler problem. Specifically, let Si be the set of rules that
match in the ith bit with K. Then, the desired subset would
be the intersection of Sis,

⋂L
1 Si. Note that if the ith bit of

K is X , then Si would be the whole set of rules and so has
no effect in the intersection operation. Figure 1 demonstrates
this idea.

The key point and main contribution of this work, is how
to find the set of rules according to each bit position in an
organized and scalable manner. Moreover, a fast and efficient

Big	  Picture	  
1	   2	   3	   …	   L	  

S1	   S3	  =	  {R	  |	  R(3)	  =	  0}	  	  

SL	  =	  {R	  |	  R(L)	  =	  1}	  	  

SL	  

1	   X	   0	   ...	   1	  Key	  

Space	  of	  Rules	  

Set	  of	  matched	  rules	  

S3	  S1	  

Fig. 1. The big picture for proposed packet classification scheme.

way to manipulate the intersection of these sets is introduced.
In the next part, the ideas will become more clear.

B. Implementation Specifications

Note that the main characteristic of the system that we care
about is how fast a key can be classified. On the other hand,
adding and deleting rules could be done with more freedom.
So, it sounds reasonable to spend more time and organize the
rules as they are added to system, so that later it can help for
a faster classification. In fact, when a rule comes in, we will
determine to which subsets it belongs.

Specifically, we have two (N × L)-bit tables, Table of 1s,
T1, and Table of 0s, T0, where N is the number of rules
and L is the number of bits in the rule/key. Each column of
these tables is assigned to one rule and is filed with a simple
algorithm. Let the jth column of the tables be assigned to Rj .
Then, depending on the ith bit of the Rj , Rj(i), three different
cases could happen:

• Rj(i) = 0: T0(i, j) = 1 and T1(i, j) = 0
• Rj(i) = 1: T0(i, j) = 0 and T1(i, j) = 1
• Rj(i) = X: T0(i, j) = 1 and T1(i, j) = 1

In fact, with this logic we have classified the rules based
on their bits. For example, the first row of T1 shows all the
rules that either have 1 or X in the first bit position. Figure
2 explains the process of adding rules as an example. This
way, when the rules come in, we can incrementally change the
tables with new columns. However, deleting the rules would be
a little bit tricky as it can make holes in the table. Fortunately,
this issue can be addressed by keeping track of empty columns
as a meta data and fill the holes first, when a new rule comes
in.

Now, when a key, K, is given we can find the set of matched
rules by finding the intersection of Sis (defined above). In fact,
depending on the ith bit of the K, K(i), we can extract the
Si from the tables:

• K(i) = 0: Si is the ith row of T0.
• K(i) = 1: Si is the ith row of T1.
• K(i) = X: Si is the universal set (neutral in intersection).
The last part of the solution is an efficient way to find the

intersections of Sis. Since these sets are saved as bits in tables,



3Implementa)on	  (Adding	  Rules)	  

Table	  of	  1s	  

RN	   …	   R2	   R1	  

1	   …	   0	   1	  

0	   …	   1	   1	  

1	   …	   1	   0	  

…
	   …	   …
	  

…
	  

1	   …	   0	   1	  

1	   2	   3	   …	   L	  

R1	  

0	   X	   1	   ...	   0	  R2	  

1	   0	   1	   ...	   1	  RN	  

L	  

Table	  of	  0s	  

RN	   …	   R2	   R1	  

0	   …	   1	   0	  

1	   …	   1	   1	  

0	   …	   0	   1	  

…
	   …	   …
	  

…
	  

0	   …	   1	   1	  

1	   X	   0	   ...	   X	  

Fig. 2. An Example of adding rules to the tables.

we can take the advantages of bitwise AND in the processor.
Specifically, assume the processor can manipulate W -bit word
length AND. Then we will group the columns of the table in
sets of size W (e.g. for PC CPUs, W = 64 or 32). With this
trick, we can decrease the number of operations with a factor
of W . Figure 3 gives an example of this procedure.

Note that the wildcard expressions in a key has no effect
on the process. Moreover, as soon as the the result of AND
operation becomes 0 in a step, it is not necessary to consider
the rest of the bits of the key. So, we can even improve the
performance with considering the more important bit positions
first (those with less wildcard expressions). For example, if the
IP part of the header needs more precise discrimination, then
it would be more likely that the rules does not match the key
in this field. So, it is better to consider this field first in the
comparisons.

III. ANALYSIS AND SIMULATIONS

In this section we will give a brief performance analysis of
the proposed scheme and compare it with the most common
exhaustive classifier, linear search.

First, let’s take a look at the add/delete complexities. While
deleting is O(N) for both schemes, the adding would be O(N)
for our method, and O(1) for linear classifier. Remember that
the proposed algorithm looks for the holes (resulted from
deletion) and fills them first. So, for each addition we may
need to search over the tables to find the holes. However,
another possible solution could be to keep track of holes in a
meta data such that the searching time would become O(1).

Now, it would be interesting to compare the methods based
on the classification time. We have implemented both our
method and the linear classifier in C++, and compared the
classification times for various number of rules.The results are
shown in Figure 4. Note that all rules are generated randomly
from the space of {0, 1, X}L. Moreover, the depicted result is
averaged out over classification time for 1000 different random

Table	  of	  1s	  

RL	   …	   R2	   R1	  

1	   …	   0	   1	  

0	   …	   1	   1	  

1	   …	   1	   0	  

…
	   …	   …
	  

…
	  

1	   …	   0	   1	  

1	   2	   3	   …	   n	  
1	   0	   X	   ...	   1	  Key	  

Bitw
ise	  AN

D	  

Table	  of	  0s	  

RL	   …	   R2	   R1	  

0	   …	   1	   0	  

1	   …	   1	   1	  

0	   …	   0	   1	  

…
	   …	   …
	  

…
	  

0	   …	   1	   1	  

1	   …	   0	   1	  

1	   …	   1	   1	  

1	   …	   0	   1	  

1	   …	   0	   1	  

RL	   R1	  

Fig. 3. Classifying a key based on the example in Figure 2. Here, it is
assumed that L < W such that all the bits in a row could be compact in one
long integer for AND operation in CPU.

10
0

10
2

10
4

10
6

10
4

10
3

10
2

10
1

10
0

10
1

10
2

Number of Rules

C
la

ss
ifi

c
a
ti

o
n

T
im

e
(m

s)

 

 

Linear Classifier

Proposed Scheme

Fig. 4. The comparison of classification time for proposed scheme and linear
search. All rules are created random. For each set of rules the experiment is
performed for 1000 number of random keys and the average of completion
time is calculated and plotted.

keys. As expected both of the curves increase linearly with the
number of rules. However, our scheme is around one order of
magnitude faster than the ordinary linear search.

It is also worth considering the memory usage of the
scheme, since its success is highly dependent on the data
tables. In order to store the tables we may need a (2×N×L)-
bit size of memory. Fortunately, this is not a very huge number.
For example, for 1 million number of rules and 1Kb size of
headers, the required memory would be around 2Gb, which is
an ordinary number for nowadays RAMs

IV. CONCLUSIONS AND FUTURE WORK

In this paper we provided a novel implementation for a
software based classifier. It was shown that when both rules
and keys contain wildcard expression, then it is not possible to
provide a general solution with complexity better than O(N).
However, it is possible to improve the manipulation time and
achieve the scalability with the proposed scheme. Simulation



4

results show that the new technique classifies one order of
magnitude faster than ordinary linear search.

One possible extension of this work would be to make
the information in the tables more compact. In fact, the
operations could become more efficient by squeezing and
interleaving the rows of the table with intersection and/or
union operations. Indeed, it may be possible to decrease the
redundant information in the tables. Moreover, as stated in
the paper, there could be priorities for more important bits
(positions with less wildcards) such that the classification
could find the differences faster and so terminate faster.

REFERENCES

[1] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “Openflow: enabling innovation in
campus networks,” ACM SIGCOMM Computer Communication Review,
vol. 38, no. 2, pp. 69–74, 2008.

[2] R. Sherwood, G. Gibb, K. Yap, G. Appenzeller, M. Casado, N. McK-
eown, and G. Parulkar, “Can the production network be the testbed,”
Proc. OSDI (October 2010), 2010.

[3] P. Kazemian, G. Varghese, and N. McKeown, “Header space analysis:
Static checking for networks,” NSDI, 2012.

[4] M. Faezipour and M. Nourani, “Wire-speed tcam-based architectures
for multimatch packet classification,” Computers, IEEE Transactions on,
vol. 58, no. 1, pp. 5–17, 2009.

[5] F. Yu, T. Lakshman, M. Motoyama, and R. Katz, “Efficient multimatch
packet classification for network security applications,” Selected Areas
in Communications, IEEE Journal on, vol. 24, no. 10, pp. 1805–1816,
2006.

[6] K. Lakshminarayanan, A. Rangarajan, and S. Venkatachary, “Algorithms
for advanced packet classification with ternary cams,” in ACM SIG-
COMM Computer Communication Review, vol. 35, no. 4. ACM, 2005,
pp. 193–204.

[7] M. Nourani and M. Faezipour, “A single-cycle multi-match packet
classification engine using tcams,” in High-Performance Interconnects,
14th IEEE Symposium on. IEEE, 2006, pp. 73–80.

[8] F. Baboescu, S. Singh, and G. Varghese, “Packet classification for
core routers: Is there an alternative to cams?” in INFOCOM 2003.
Twenty-Second Annual Joint Conference of the IEEE Computer and
Communications. IEEE Societies, vol. 1. IEEE, 2003, pp. 53–63.

[9] P. Gupta and N. McKeown, “Packet classification on multiple fields,”
ACM SIGCOMM Computer Communication Review, vol. 29, no. 4, pp.
147–160, 1999.

[10] S. Singh, F. Baboescu, G. Varghese, and J. Wang, “Packet classification
using multidimensional cutting,” in Proceedings of the 2003 conference
on Applications, technologies, architectures, and protocols for computer
communications. ACM, 2003, pp. 213–224.

[11] P. Gupta and N. McKeown, “Classifying packets with hierarchical
intelligent cuttings,” Micro, IEEE, vol. 20, no. 1, pp. 34–41, 2000.


