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Abstract

Today, cloud computing frameworks adopt one of two strategies to schedule their

computations over hundreds to thousands of machines. In the centralized strategy, a

controller dispatches computation units, called tasks, to worker nodes. Centralization

allows a framework to quickly reschedule, respond to faults, and mitigate stragglers.

However, a centralized controller can only schedule a few thousand tasks per second

and becomes a bottleneck. In the distributed strategy, there is no central node. These

systems install data flow graphs on each node, which then independently execute and

exchange data. By distributing the control plane and turning it into data flow, these

frameworks can execute hundreds of thousands of tasks per second, and do not have

a control plane bottleneck. However, data flow graphs describe a static schedule;

even small changes, such as migrating a task between two nodes, requires stopping

all nodes, recompiling the flow graph and reinstalling it on every node. This leads

to high latency or wasteful resource utilization for rescheduling, fault recovery, or

straggler mitigation.

This dissertation presents a new, third strategy, called execution templates. Exe-

cution templates leverage a program’s repetitive control flow to cache control plane

decisions in templates. A template is a parametrisable block of tasks: it caches

some information (e.g., task dependencies) but instantiation requires some parame-

ters (e.g., task identifiers). Executing the cached tasks in a template requires sending

a single message that loads the new parameters. Large-scale scheduling changes in-

stall new templates, while small changes apply edits to existing templates. Execution

templates are not bound to a static control flow and efficiently capture nested loops

and data dependent branches. Evaluation of execution templates in Nimbus, a cloud

iv



computing framework, shows that they provide the fine-grained scheduling flexibility

of centralized control planes while matching the performance of the distributed ones.

Execution templates in Nimbus support not only the traditional data analytics, but

also complex, scientific applications such as hybrid graphical simulations.
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Chapter 1

Introduction

Over the past decade, data center and cloud computing has transformed the scale and

scope at which we can process data. Being able to harness hundreds to thousands of

machines in order to process hundreds of gigabytes to petabytes of information has

enabled big data analytics. Modern life is entwined with the technologies powered

by big data analytics: search engines and information retrieval [39, 74, 89, 110],

social networks [33, 93], speech and image recognition [69, 47], and natural language

processing [37, 116], to name a few. Collecting and processing massive datasets

has rekindled interest in many traditional algorithms and techniques such as neural

networks [90, 66, 120], machine learning [45, 108, 87, 83, 53], and graph processing

algorithms [100, 111, 30, 124, 82]. Most of these techniques are decades old, but big

data has deployed them for practical applications.

These applications run in data centers against a high-level API of cloud computing

frameworks. Application developers write simple programs. The framework trans-

forms the program into many smaller computation units, called tasks, and seamlessly

distributes them over the cluster. Cloud computing frameworks hide the intricacies of

the underlying cluster from the programmers. They provide elastic scalability [6, 48],

multi-tenant execution and resource sharing [117, 67, 99, 50], load balancing and

straggler mitigation [29, 130, 26], as well as fault recovery [48, 128].

The performance characteristics of cloud frameworks have evolved over the time.

They have transitioned from file I/O processing [6, 48] to in-memory processing [86,

1
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94, 128] with transparent optimization layers [121, 1, 101, 127, 102]. This has made

tasks orders of magnitude faster for many applications: optimized tasks that operate

on in-memory data are as fast as tens of milliseconds. Furthermore, the straggler

mitigation techniques [97], and strong scaling gains for interactive and stream pro-

cessing [94, 24] has encouraged breaking up tasks in to even smaller units for faster

completion times. Overall, the trend shows increasing need for supporting applica-

tions with milliseconds long tasks [99, 94].

Speedup in computations demands a higher task throughput from a framework.

Also, it imposes lower latency requirements for dynamic scheduling decisions, such as

reactively changing the task partitioning due to changes in resources or stragglers [117,

67, 99, 109]. Current frameworks cannot deliver high task throughput requirements

without sacrificing fast, dynamic scheduling. Centralized frameworks provide low

latency, dynamic scheduling but have limited task throughput [48, 6, 128]. Distributed

frameworks support high task throughput, but either have static scheduling or impose

a high latency for dynamic changes [94, 22].

This dissertation introduces a new abstraction, called execution templates, that

provides high task throughput with fast, dynamic scheduling. Execution templates

take advantage of the fact that long running applications are iterative in nature;

different iterations compute similar tasks with only minor differences. Caching the

tasks in parametrisable blocks increases task throughput. The cached blocks can be

modified at task granularity to keep the cost of scheduling changes proportional to the

extent of scheduling differences from one iteration to the other. This makes dynamic

scheduling feasible with execution templates. Also, execution templates provide a

patching mechanism to capture applications with dynamic program control flow such

as nested loops and data dependent branches.

Execution templates are implemented in Nimbus, an analytics framework designed

for fast computations. Nimbus supports traditional data analytics applications, as

well as complex, scientific computations such as hybrid graphical simulations. Eval-

uations show that execution templates enable Nimbus to match the performance of

distributed frameworks, while providing fast, dynamic scheduling decisions similar to

centralized frameworks.
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Figure 1.1: Cloud computing frameworks have evolved from file I/O to in-memory
processing with CPU optimization layers. As a result, the computation units, called
tasks, have become 2–3 orders of magnitude faster.

1.1 Evolution of Cloud Computing

Each task in a framework operates on a partition of data, and might mutate it or

produce new data objects. As frameworks transitioned from file I/O to in-memory

processing with CPU optimization layers, tasks have become orders of magnitude

faster. Figure 1.1 shows the evolution of cloud computing frameworks and changes

in their performance characteristics over time.

MapReduce [48] is the first general purpose and fault tolerant cloud computing

system. Although there had been a few parallel programming systems before MapRe-

duce, they are based on restricted programming models, tailored for small clusters,

and leave the failure handling details to the programmers [80, 35, 62]. Each MapRe-

duce task reads a chunk of data off disk as input, performs a computation, and then

pushes the intermediate and final results back to disk. Using this file-backed model,

MapReduce can process petabytes of data despite the failures and main memory

limitations. However, the tasks are I/O-bound: progress is limited by disk speed.

More recently, systems such as Spark [128] and Naiad [94] have observed that

many applications, when distributed across enough workers, can keep their entire

working set in memory. Instead of having each task read from and write to disk, as

frameworks such as MapReduce [48] and Hadoop [6] do, these systems operate on in-

memory state. This allows multiple computations over in-memory data, for iterative

and interactive applications. As a result, they have shown, orders of magnitude task
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speedups. Nowadays, commercialized clusters [3, 13, 17] elastically scale to hundreds

of gigabytes of memory capacity, and enable increasing number of applications to fit

their entire dataset in memory [10].

Tasks in in-memory cloud frameworks are CPU-bound: most of the time is spent

processing data [98]. As a result, systems have begun focusing on optimizing CPU

performance. Spark 2.0, for example, reports 10x speedups over prior versions with

new code generation layers [121, 1]. Introducing data-parallel optimizations such as

vectorization, branch flattening, and prediction can, in some cases, be faster than

handwritten C [101, 127]. Runtimes for cross-library optimizations, e.g. Weld [102],

and GPU-based computations [11, 22] improve performance even further.

1.2 Control Plane Implications

The speedup in computations has implications for the design and performance of the

control plane of the cloud computing frameworks. The control plane transforms the

driver program of the applications into individual tasks executing on the workers.

The details of the control plane roles are framework dependent, but generally include

generating and spawning tasks, coordinating global operations such as shuffles and

reductions, tracking the execution progress, and providing load balancing and fault

tolerance. The design goals for the control plane are, on one hand, high task through-

put, and low latency, dynamic scheduling on the other. Today, frameworks adopt one

of two strategies for their control plane design. One is a centralized controller model,

and the other is a distributed data flow model. Figure 1.2 depicts these two strategies.

Each instance of the application is launched as a job in the framework which consists

of many tasks. The dataflow enforces the ordering among tasks, which is abstracted

as a directed acyclic graph, called task graph.

In the centralized model, systems such as Spark [128] and MapReduce [48] use a

single control node that dispatches tasks to worker nodes, as depicted in Figure 1.2(a).

Centralization allows a framework to quickly reschedule, respond to faults, and mit-

igate stragglers reactively, but as tasks get shorter the control plane becomes a bot-

tleneck. Available centralized controllers can only support a few thousand tasks per
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(b) Distributed control plane model.

Figure 1.2: Two control plane design strategies in the cloud computing frameworks:
(a) a centralized controller that allows fast, dynamic scheduling but has limited task
throughput, (b) a distributed control plane that sustains orders of magnitude higher
task throughput but suffers from high latency for scheduling changes.

second [99]. With the tasks in the order of milliseconds, even a cluster with few

workers can quickly saturate the controller’s capacity. While there is a huge body of

work for scheduling multiple jobs within a cluster [36, 49, 50, 67, 78, 99, 117], these

approaches do not help when a single job has a higher task throughput than what

the control plane can handle.

The distributed model, used by systems such as Naiad [94] and TensorFlow [22],

is a fully-distributed control plane as shown in Figure 1.2(b). When a job starts,

these systems install data flow graphs on each worker, which then independently

execute and exchange data. By distributing the control plane and turning it into data

flow, these frameworks have strong scaling and can execute hundreds of thousands

of tasks per second. However, data flow graphs describe a static schedule. Even

small changes, such as migrating a task between two workers, require stopping the

job, recompiling the flow graph and reinstalling it on every worker. As a result,

in practice, these systems mitigate stragglers only proactively by launching backup

workers, which requires extra resource allocation even for non-straggling tasks [22].

In summary, speedup in computations pressures the control plane to process tasks



CHAPTER 1. INTRODUCTION 6

Control Plane Example Task Throughput Scheduling Cost

Design Framework (task per sec) (per task)

Centralized
MapReduce [48]

≈ 1, 000 ≈ 100µsHadoop [6]
Spark [128]

Distributed
Naiad [94] ≈ 100, 000 ≈ 100, 000µs
TensorFlow [22]

Centralized w/
Nimbus (§5) ≈ 100, 000 ≈ 100µs

Execution Templates

Table 1.1: Current cloud computing frameworks have either a centralized control
plane model with fast, dynamic scheduling but limited task throughput, or a dis-
tributed control plane model with orders of magnitude higher task throughput but
very high scheduling cost. Execution templates (§4) introduced by this dissertation
enable Nimbus (§5) to match the task throughput of a distributed framework, while
providing the fast, dynamic scheduling similar to centralized frameworks.

at a higher rate to keep workers busy. Current frameworks fail to deliver the high

task throughput required by the applications at scale without sacrificing low latency,

dynamic scheduling. Table 1.1 summarizes these two design approaches for the control

plane with example frameworks and their characteristics in terms of task throughput

and dynamic scheduling cost.

1.3 Execution Templates

This dissertation presents a third strategy using an abstraction called execution tem-

plates. Execution templates schedule at the same per-task granularity as centralized

schedulers do. They do so while imposing the same minimal control overhead as

distributed execution plans. Execution templates leverage the fact that long-running

jobs (e.g. machine learning and graph processing) are iterative, running the same

computation many times [119]. Machine learning algorithms, for example, typically

iterate until the estimation error drops below a threshold.

Logically, a framework using execution templates centrally schedules at the task
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granularity generated based on the driver program. As it generates and schedules

tasks, however, the system caches its decisions and state in parametrisable blocks

as templates. The next time the job reaches the same part of its program, the

system executes from the templates rather than resend all of the tasks. We call this

abstraction a template because it caches some information (e.g., dependencies) but

instantiating it requires parameters (e.g., task IDs).

Once installed, execution templates provide three mechanisms:

1. Instantiation allows executing the tasks cached in the template by only loading

a small set of parameters. The extent of changing parameters depends on the

underlying framework and, for example, could be as simple as passing new task

identifiers to each task. This mechanism helps improving the task throughput

by avoiding reprocessing each individual task from scratch at the control plane

for iterative workloads.

2. Edits enable fine-grained modifications in the templates by adding/removing

individual tasks to/from a cached block. This mechanism brings in reactive

load balancing in response to fine-grained scheduling changes despite the fact

that the cached blocks might be based on an obsolete scheduling decision.

3. Patching adapts execution templates to dynamic changes in the program flow

control. Each template has a set of preconditions that have to meet for the

execution of its tasks. These preconditions depend on the underlying framework,

and for example, could be the set of data objects needed in memory for the

task executions. Patches are generated during run time if needed to match the

system state with the preconditions. This mechanism allows dynamic program

control flow to support nested loops and data dependent branches.

Depending on how much system state has changed since the template was in-

stalled, a controller can immediately instantiate the template, edit the template by

changing some of its tasks, patch the template to satisfy preconditions, or install a

new version of the template. Using execution templates, a centralized controller can

generate and schedule hundreds of thousands of low-latency tasks per second through

lightweight instantiation messages.
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1.4 Nimbus: A Framework with Templates

To evaluate the benefits and tradeoffs of execution templates, we have implemented

them in Nimbus, an analytics framework designed to support high performance com-

putations. Nimbus embeds execution templates in its control plane and exploits a few

novel optimizations to benefit the most from the mechanisms provided by templates.

This dissertation presents the details of implementing execution templates in Nimbus,

and lays out what it would take to incorporate them in other frameworks.

In order to show the generality of execution templates, we demonstrate that Nim-

bus can not only support traditional data analytics applications, but also is capable of

running complex scientific applications, such as a graphical simulation. The program

control flow of graphical simulations has nested loops and data dependent branches

which leads to a nondeterministic and complex control flow. For example the driver

program of a canonical water simulation has triply nested loops with eight basic

blocks, two of which with multiple entry points. This is in contrast with the typically

simple task graph of data analytics applications. The complex program control flow

triggers subtle patching scenarios to match the templates with the changing state

of the workers. This dissertation presents running these applications within a cloud

framework, for the first time. Specifically, we have ported fluid simulations from

PhysBAM library [51] in to Nimbus. PhysBAM is an open-source, physics-based,

simulation package that has received two Academy Awards and has been used in over

20 feature films [20].

Distributing graphical simulations in a cloud framework is not straightforward.

They require very different data and execution models than what current cloud com-

puting systems provide. A graphical simulation uses multiple complex data models,

such as a marker-and-cell grid [65] for the fluid volume, a dense particle field for the

fluid surface [52], and a system of linear equations to ensure fluid does not disappear.

These data structures are geometric in nature and computations on neighboring re-

gions have tight dependencies. These requirements differ greatly from data tuples

as in MapReduce [48], Spark [128], and Naiad [94] or graphs as in Pregel [88] and

PowerGraph [60].This dissertation describes the design details that enable Nimbus to
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automatically distribute a single-core grid-based and hybrid simulation. The novel

data abstraction hides the distribution complexities from the simulation library de-

velopers as well as the driver program.

1.5 Thesis Statement and Contributions

This dissertation describes the design and implementation of a new scalable and

flexible control plane for cloud computing frameworks. We argue that:

Execution templates realize orders of magnitude higher task through-

put than centralized frameworks, without sacrificing fine-grained,

dynamic scheduling. By caching control plane decisions in parametris-

able blocks, an execution template can dynamically schedule high

performance computations. Execution templates are general enough

to not only support traditional data analytics, but also complex

applications with nested loops and data dependent branches that

results in nondeterministic control flow.

The contributions of this dissertation are:

1. Evaluation and analysis of the existing cloud computing engines, demonstrating

how the control plane is an emerging bottleneck for data analytics.

2. Execution templates, an abstraction for the control plane of cloud computing

frameworks, that provide high task throughput and low cost, dynamic schedul-

ing at the same time.

3. The design, implementation, and evaluation of Nimbus, a distributed cloud com-

puting framework that embeds execution templates, including program analyses

to generate and install efficient templates, validation and patching templates to

meet their preconditions, and dynamic edits for in-place template changes.

4. An evaluation of execution templates implemented in Nimbus on analytics

benchmarks, comparing them with the available frameworks with flexible cen-

tralized controllers, and high-throughput distributed data flow models.
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5. A demonstration of a single-core PhysBAM [51] particle level-set fluid simula-

tion [52] that Nimbus automatically distributes in the cloud showing execution

templates in practice for complex applications with nested loops and data de-

pendent branches.

1.6 Dissertation Outline

The rest of this dissertation is organized as follows. Chapter 2 provides a background

of cloud computing systems and related work. Chapter 3 argues that control plane is

becoming the bottleneck for cloud computing engines. Chapter 4 introduces execu-

tion templates and describes the mechanisms that they provide. Chapter 5 presents

the design and implementation of Nimbus and the details of implementing execution

templates in Nimbus. Chapter 6 evaluates execution templates and explores the per-

formance of running data analytics under Nimbus, comparing the results with the

performance of state of the art frameworks in regards to task throughput and task

scheduling. Chapter 7 describes the data model and system design of Nimbus that en-

ables automatic distribution of graphical simulations, and evaluates the performance

of graphical simulations running under Nimbus. Finally, Chapter 8 discusses and

concludes.



Chapter 2

Background and Related Work

This dissertation builds on a large history of prior work in large scale distributed and

parallel computations. The related work can be divided into three major classes, each

of which examines the problem from a different point in the software stack: cloud

computing frameworks, cloud scheduling systems, and high performance computing.

2.1 Cloud Computing Frameworks

Cloud computing frameworks facilitate distributed programming for data-centric com-

putations. Applications are written using simple interfaces, and the framework au-

tomatically partitions and distributes them across many nodes. The difficult aspects

of distributed programming are abstracted away from the application developers by

seamlessly handling concurrent execution, resource allocation, elastic scaling, net-

working, scheduling, straggler mitigation, and fault recovery.

Figure 2.1 depicts the overall structure of cloud computing frameworks. Appli-

cation developers specify an application logic by writing a simple driver program.

Each instance of the application runs as a job in the framework. The control plane

transforms each job into many smaller computation units, called tasks, and harnesses

a cluster of workers to execute the tasks. The control plane could be distributed or

centralized as depicted in Figure 1.2.

There are many flavors of cloud computing frameworks, ranging from generalized

11
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Figure 2.1: Each instance of an application runs as a job in the cloud computing
framework. The controller plane transforms the driver program of a job into many
smaller computation units, called task. Control plane assigns the task to a cluster of
workers for execution.

systems to application specific frameworks. They differ in their architecture and

design, and hence show various performance characteristics under different workloads.

2.1.1 Application Programming Interfaces

The application programming interface (API) of cloud computing frameworks ab-

stracts the parallel operations with a high-level data model. The data model makes

it easier for the programmers to specify the data flow of the application, and at the

same time, gives frameworks the flexibility to distribute and schedule the computa-

tions, automatically. The level of abstraction and flexibilities vary from framework to

framework. There is a tradeoff between simplicity and generality on one hand, and

application domain optimizations, on the other. General data models fit many appli-

cations but cannot deliver the best performance in every case domains. In contrast,

domain specific frameworks (e.g. for graph processing) restrict the interface in favor

of workload dependent optimizations (e.g. vertex and edge caching).
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Legacy Frameworks

MapReduce [48] introduced the first general-purpose application interface for cloud

computations. Although there had been a few parallel programming systems before

MapReduce, they were based on restricted programming models, were tailored for

small clusters, and left the failure handling details to the programmers [80, 35, 62].

The goal of MapReduce was to leverage thousands of interconnected cheap PC’s for

large-scale, real-world computations [14]. For example, one of the major use cases

was ranking the web for the purpose of search engine developed at Google based on

the PageRank algorithm [100].

In MapReduce, applications are translated in to a series of map and reduce stages.

The data object is modeled as a collection of key-value tuples. Each map stage

receives a set of key-value pairs as input, and outputs a set of intermediate key-value

pairs, which are fed to the reduce stage. The MapReduce runtime could dynamically

execute many parallel mappers or reducers; however, all the intermediate tuples with a

similar key are guaranteed to be aggregated in a single set for reduction. This requires

a global barrier, and a sort and shuffle stage between the mappers and the reducers.

The sort and shuffle is handled by the runtime, automatically. In MapReduce, data

sets are accessed from and pushed to the disk, and so the execution survives node

failures. For example, MapReduce at Google uses a replicated distributed file system,

GFS [56], to store and manage the data sets.

MapReduce has been well received in the academia and industry, due to its sim-

plicity and generality. Many distributed computations could be easily ported in to

MapReduce abstraction. For example, Hadoop [6], the open source implementation of

MapReduce in Java, and its application specific descendants [7, 96, 8, 5] are actively

and commonly used in the industry for big data computations.

Dryad [72] provides a more general interface for coarse-grained data parallel ap-

plications. A Dryad program specifies computations as vertices that are connected

with channels to form a dataflow graph. The Dryad runtime distributes the vertices

among a cluster of computing machines and realizes data channels with files, TCP

pipes, or shared memory accesses. Each vertex is a sequential program; however,

Dryad schedules vertices concurrently on multiple machines and/or multiple cores of
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a single machine.

The generalized vertex-channel abstraction allows application developers to spec-

ify arbitrary directed acyclic graph (DAG) for the communication patterns. This is in

contrast with the general map and reduce stages in MapReduce that restrict dataflow

patterns in favor of generality and simplicity. For many data intensive applications,

choosing an application specific dataflow graph can greatly improve the performance.

For example, implementing customized multi-level reduction schemes based on the

intermediate data size and the number of reducing nodes could alleviate the com-

munication channel bottlenecks and avoid running out of local memory space on the

reducers [72].

Higher Level Programming Interfaces

The key-value or vertex-channel models, while general, are tedious to manage at

application level. Hence, there have been numerous efforts for increasing programmer

productivity in writing applications for cloud frameworks. For example, Pig [96],

Hive [7], and Sawzall [104] are domain-specific languages for SQL queries on top of

Hadoop and MapReduce. FlumeJava [42] provides a Java library for MapReduce

pipelines through high level classes called parallel collections. The entire pipeline or

multiple pipelines of MapReduce are implemented within a single Java program.

DryadLINQ [125] builds on top of Dryad and provides a set of language exten-

sions and a novel programming model. Specifically, it provides a data model based

on strongly typed .Net objects, and supports a hybrid imperative and declarative

interface in high-level programming languages. The compiler and runtime enable

high-level implementation of many graph and machine learning algorithms, as well as

SQL queries, without losing significant performance compared to a direct, application

specific implementation.

CIEL [95] and Optimus [79] introduce more flexible control flow mechanisms to the

Dryad interface. A CIEL program can have data-dependent branches during run time,

where the execution DAG is generated dynamically as tasks execute. Optimus extends

CIEL operators for more general dynamic task graph rewriting in DryadLINQ.



CHAPTER 2. BACKGROUND AND RELATED WORK 15

Frameworks for In-Memory Computations

For application that can fit the entire work set in memory, file processing models

induce unnecessary I/O cost. Unlike MapReduce and Dryad which rely on non-

volatile storage for reading input data blocks and writing intermediate/output results

for fault resilience, more recent frameworks provide interfaces that allow in-memory

operations. Piccolo [106] allows parallel user defined functions to read and mutate

distributed, in-memory key-value stores. Piccolo relies on checkpointing and rollback

mechanisms to revive from machine failures.

Spark [128] introduced Resilient Distributed Datasets (RDD) abstraction for in-

memory computations with efficient fault recovery mechanisms. Spark’s immutable

data model lends itself to lineage-based, parallel fault recovery. Spark provides a

high-level programming interface for coarse-grained data parallel operations on RDDs

such as map, reduce, and groupBy. There are applications specific libraries built

on top of Spark for SQL queries [123, 31], graph processing [61], machine learning

algorithms [9, 8, 19], and stream processing [129]. Simplicity and generality has made

Spark one of the most common frameworks for application developments among data

scientists [10]. Spark support interfaces in high-level languages such as Scala and

Python, as well as lower level managed languages such as Java.

Naiad [94] is another framework for in-memory computations. It introduces timely

dataflow abstraction to unify batch processing, iterative computations, and stream

processing in a distributed manner. The distributed, event-based runtime handles low

latency computation and incremental computing, very efficiently. Similar to Spark,

Naiad provides high-level and coarse-grained data parallel operations, and also allows

user defined, arbitrary dataflow graphs similar to Dryad in terms of vertices and

edges. Vertices exchange messages along edges and implement callback functions for

message send/receive events. Each message has an associated timestamp that reflects

the program context or loop counter. The runtime synchronizes the operations among

nodes through timestamps.
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Transparent Code Optimizations

Since the inception of general purpose frameworks for in-memory computations [128,

94], numerous workload traces from academia and industry have shown that many

applications have become CPU-bound: the majority of the time was spent at the

machines, using CPU power to compute on the in-memory data [98]. However, due

to high level abstractions in general purpose frameworks, most of the CPU cycles

were wasted. For example, 70% of the Spark applications are written in Scala [127].

Scala code is compiled into Java bytecodes executed by the JVM. The translated

bytecodes are not necessarily the most optimized version possible. Also, JVM adds

extra overhead for garbage collection and increases memory footprint due to memory

expansion. Overall, the Scala code could be two orders of magnitude slower than code

written directly in native code. We explore this inefficiency in details, in Chapter 3.

This trend has led to a wave of research on optimizing the CPU performance

in cloud computing frameworks. Programming models such as DimWitted [85] and

DMLL [40], within the database and parallel computing communities, have explored

the computational inefficiency of Spark code, proposing new programming models

and frameworks to replace it. Spark 2.0 has reported 10x speedups for common SQL

benchmarks compared to older Spark versions [121] through transparent optimizations

for code generation layers [31]. Specifically, the second generation Tungsten engine,

introduced in Spark 2.0, emits optimized bytecode at runtime that collapses the entire

query into a single function, eliminating virtual function calls and leveraging CPU

registers for intermediate data [122].

There is also ongoing research on a common intermediate language for Spark that

provides a glossary of data-parallel optimizations (including vectorization, branch

flattening and, prediction), suggesting performance in some cases even faster than

hand-written C [101, 127]. Weld [102] takes the optimization one step further for cross

library data access patterns. The results show prominent speedups even for libraries

implemented in lower level languages by leveraging the application dependent data

layout information.
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Domain Specific Frameworks

In addition to general purpose cloud frameworks, many domain specific systems have

been developed for 1) stream processing, 2) machine learning and neural networks

and 3) graph processing.

MillWheel [24] and Storm [115] are designed for low latency, stream processing

applications. With MillWheel, application developers specify a directed graph of

computing nodes. The runtime distributes the nodes and ensures persistent flow

of records among them, despite machine failures, through checkpointing of batched

records and atomic transactions. Each record has a logical time associated with it,

that simplifies time-based queries over the records. Strom (used internally at Twitter)

has a similar abstraction, and builds on top of ZooKeeper [71] for distribution and

consistency guarantees.

With the wide popularity of machine learning algorithms and neural networks

among data scientists, there have been efforts to design specialized systems for these

workloads. DistBelief [47] introduced a system design for learning algorithms with

billions of model features. For these applications, updating the entire feature vec-

tor on every node (as in general purpose systems such as Spark and Naiad) is not

feasible. However, each node only accesses a subset of feature vector. DistBelief

keeps a centralized version of the features, which then nodes read and write par-

tially. Parameter Server [84] extends this idea to asynchronous operations and more

flexible consistency models. This is important for computations at scale, since with

only synchronous implementations the progress speed is harshly affected by the tail

latency. In Parameter Server, users can choose the consistency model based on the

requirement of the workload to tradeoff between convergence rate and the progress

speed.

TensorFlow [22] builds on top of DistBelief and Parameter Server, but provides

generalized interface for heterogeneous clusters including multicore CPUs, GPUs, and

specialized ASICs known as Tensor Processing Units. TensorFlow provides a reach

library of algorithms with a customizable consistency model, such that programmers

can easily deploy complex algorithms concisely. With TensorFlow the code devel-

oped for testing and production remains the same, greatly increasing programmer
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Figure 2.2: Relative position of prior cloud frameworks in terms of task throughput
and dynamic task scheduling cost.

productivity.

Systems such as Pregel [88], PowerGraph [60] and GraphX [61] provide abstrac-

tions for expressing, and techniques for accelerating graph computations. Pregel

introduces supersteps composed of vertex programs and messages between neighbor-

ing vertices. PowerGraph introduces vertex-cut partitioning to balance computation

and reduce communication in natural graphs with a power-law degree distribution.

GraphX builds on top Spark platform, and introduces caching and compression tech-

niques to manage and exchange graph data efficiently.

2.1.2 Cloud Control Plane Design

There are two design philosophies for the control plane: 1) centralized controller, or

2) distributed dataflow. In the first strategy, frameworks have a centralized node

that generates and assigns tasks to the workers [48, 6, 128, 95, 79]. This design has a

limited tasks throughput, but allows low cost reactive scheduling crucial for straggler

mitigation. In the second strategy, each worker installs a distributed data flow that

generates and executes tasks locally [24, 115, 94, 22]. This design allows orders of

magnitude higher task throughput, but any schedule change (e.g. migrating few tasks

among workers) induces significant runtime overhead for installing new dataflow on
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each worker node. Figure 2.2 shows the relative position of prior frameworks in the

design scope with respect to task throughput and dynamic scheduling cost. In the

following, we explore the details of each control plane design point in the context of

example systems.

Centralized Controller

Systems such as MapReduce [48], Hadoop [6], CIEL [95], Optimus [79], and Spark [128]

keep the entire control flow of a job on a central controller, dynamically dispatching

tasks as workers become ready. This gives the controller an accurate, global view

of the job’s progress, allowing it to quickly respond to failures, changes in available

resources, and system performance. However, centralization limits the tasks through-

put to few thousand tasks per second [99]. Generating and transmitting each tasks to

workers is bound by the computation power for dependency analysis at the controller,

and networking bandwidth for metadata transmission from controller to workers.

In MapReduce [48] (and for this matter Hadoop [6]), a centralized master parti-

tions the map and reduce stages in to parallel partitions and assigns each task to a

slave. Master also coordinates sort and shuffle stage among slaves by partitioning the

intermediate key domain and assigning each sorting task to a slave. Masters through-

put in generating and assigning the tasks is limited, however the centralization allows

low cost tasks migration and straggler mitigation [26] by efficiently assigning backup

slaves for the straggling tasks [130, 29].

CIEL [95] and Optimus [79] extend the centralized controller functionalities by

adding dynamic control flow. In these frameworks, tasks can spawn other tasks to

the controller for execution, and so in a sense, the task graph is generated dynamically

during execution. This adds extra overhead at the controller for dynamically tracking

and generating the tasks graph at the runtime. Spark [128] controller supports similar

functionalities, and in addition, keeps track of a lineage for each data object in the

system for efficient, fine-grained fault recovery. Upon failure, instead of rewinding

back to a checkpoint, Spark controller reconstructs only the missing data objects on

the failed worker by re-executing the tasks on the lineage. Spark controller handles

only a few thousand tasks per second [99].
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Execution templates, described in Chapter 4, borrow the same centralized control

plane design strategy from prior systems to keep the dynamic scheduling and control

flow in place. Also, execution templates add caching functionalities to a centralized

controller to improve the limited task throughput by memoizing the task assignment

decisions and caching tasks on the workers.

Distributed Dataflow

Systems such as MillWheel [24], Strom [115], Naiad [94], and TensorFlow [22] de-

ploy a decentralized control plane. In these systems, each computing node installs

a dataflow graph locally and generates and executes tasks independently. If there is

synchronization required among nodes, they directly exchange data objects through

lightweight messaging mechanisms. This design scales well and can support hundreds

of thousands of tasks per second.

However, scheduling changes in decentralized systems have a significant cost. Since

there is no centralized coordinator, any change requires stopping all nodes, installing

new dataflow, and resuming execution from a checkpoint. As a result, in practice,

these systems only deal proactively with the stragglers through two major techniques.

In the first approach, stragglers are avoided through meticulous engineering [94].

However, this does not align with the notion of cloud as a service [3, 17, 13] where

there is no direct access by the developers to the cluster hardware. The second

approach launches backup workers for straggler mitigation [22]. This is not appealing

from a cluster utilization perspective, as it requires at least doubling resources for

synchronous operations.

Decentralized systems primarily emerged for low latency, stream processing appli-

cations. In MillWheel [24] and Storm [115], the stream processing systems deployed

at Google and Twitter, the dataflow graph defines a set of computing nodes, each

receiving a portion of the input stream. Application driver program explicitly defines

the flow of streams among the nodes, such that there is no need for on-the-fly task

assignments or coordination in the control plane. Fault recovery is handled through

frequent and persistent checkpointing at the nodes.

In Naiad [94], the control plane supports loops in the driver program, as well.
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Each message exchanged among nodes has a timestamp. The timestamp specifies

the instance of the loop in the driver program. The control plane uses lightweight

broadcast messages with monotonically increasing timestamps to mark the bound-

aries of each iteration of a loop. Nodes synchronize the execution according to the

timestamps. Naiad does not support dynamic dataflow changes, so it tries to prevent

stragglers by meticulous engineering. For example, Naiad’s deployment at Microsoft

data centers [94] disables TCP’s Nagle’s algorithms (for delayed acknowledgments)

and reduces the default TCP acknowledgement timeout. These help improve the

throughput for the bursty traffic during broadcasts. Also, Naiad implementation is

hand tuned to minimize object allocations such that the garbage collector is activated

less frequently. Note that the garbage collector could suspend the process, which leads

to random stragglers in the cluster.

TensorFlow [22] turns the driver program in to a dataflow graph depending on

the available resources. The Master node translates the cross node dependencies to

a pair of send/receive tasks on the nodes. Also, TensorFlow allows data dependent

branches through multiplexing nodes where every node takes a same branch based on a

data value. Master could launch backup workers for each computation. The backup

workers help with the tail latency. For asynchronous operations, the computation

proceeds with only a subset of the fastest workers. For synchronous operations, at

each stage, the result from the faster node between each primary and backup worker

is used for the following stages.

Execution templates borrow the idea of installing dataflow plans at runtime but

generalize it to support multiple active plans and dynamic control flow. Furthermore,

execution templates maintain fine-grained scheduling by allowing a controller to edit

the installed dataflow in place.

2.2 Cluster Scheduling Systems

Cloud schedulers (also called cluster managers) schedule tasks from many concurrent

applications across a cluster of worker nodes. Each instance of an application runs

as a job in cloud computing frameworks. A cloud framework could run multiple



CHAPTER 2. BACKGROUND AND RELATED WORK 22

concurrent jobs, and many cloud frameworks could share the resources in a cluster.

Cloud schedulers have global knowledge of all of the jobs in the cluster, and control

placement of each task on the worker nodes. Schedulers efficiently multiplex jobs

across resources to improve cluster utilization [117, 67, 63], improve job completion

time [54], fairly allocate resources across jobs [58], follow other policies [36, 50, 99], or

allow multiple algorithms to operate on shared state [109]. There has been extensive

work on the cluster schedulers, and there are numerous systems varying from system

architecture or scheduling policy standpoints.

2.2.1 Scheduling Architectures

Initial cloud schedulers are centralized. In systems such as Mesos [67] and YARN [117],

a centralized scheduler monitors the entire cluster and places tasks on the worker

nodes for executions. Implementing scheduling policies such as job priorities, fairness,

and resource allocation is straightforward in centralized schedulers with the global

knowledge and control over the entire system. However, the limited task throughput

of this architecture is a bottleneck at scale.

Increasing task rates from in-memory analytics workloads and high, aggregate

task throughput from many concurrent jobs [97] have led some systems to take a

distributed scheduling architecture. Sparrow [99] introduced the first distributed

scheduling model. In Sparrow, jobs could connect to any scheduling node from a

pool of schedulers. Sparrow schedulers are stateless, making it straightforward to

scale by elastically adding or removing nodes. Each scheduler monitors the cluster

independently; however, they still make good cooperative scheduling decisions based

on mechanisms and principles derived from the power of two choices [92].

To optimize cluster utilizations with better global decisions, more recent systems

have taken a hybrid approach. Tarcil [50] uses a coarser grained approach, in which

multiple schedulers maintain copies of the full cluster state whose access is kept effi-

cient through optimistic concurrency control because conflicts are rare. Hawk’s hybrid

approach centrally schedules long-running jobs for efficiency and distributes short job

scheduling for low latency [49]. Finally, Mercury [78] allows multiple schedulers to
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request resources (“containers”) from a shared pool and then schedule tasks on their

resources independently.

These distributed and hybrid schedulers address the problem of when the com-

bined task rate of multiple jobs is greater than what a centralized scheduler can

handle. Execution templates solve a similar, but different problem, when the control

plane bottlenecks for a single job. As we describe in Chapter 3, with optimized data

analytics, the control plane of cloud frameworks become a bottleneck even for a single

job at scale.

2.2.2 Scheduling Policies

Cluster schedulers implement various scheduling policies including min-cost flow com-

putations [59, 73], packing [63, 64], or other algorithms [36, 67, 78, 109]. This disserta-

tion does not examine the question of scheduling policy. Instead, it provides solutions

to enable a control plane to support high task throughput with fine-grained schedul-

ing decisions. Such a control plane could then benefit from any of the aforementioned

scheduling policies. Scaling the control plane is orthogonal to the scheduling policies.

2.3 High Performance Computing

High performance computing (HPC) embraces the idea that an application should

be responsible for its own task scheduling, as it has the greatest knowledge about

its own performance and behavior. This approach is motivated by the very different

scale and cost of large-scale supercomputers; when a job uses weeks of time on a

multi-million dollar machine [15], it is worth demanding more programmer effort to

tune and optimize performance.

HPC systems stretch from very low-level interfaces, such as MPI [113], which

is effectively a high performance messaging layer with some support for common

operations such as reduction. Partitioning and scheduling, however, is completely an

application decision, and MPI provides very little support for load balancing or fault

recovery [68]. Extensive developer effort is required for a correct and scalable MPI
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implementation, e.g. synchronizing between processes by exchanging messages, and

mapping computation workload to processes evenly.

Charm++ [76] resembles MPI, but decomposes processes into smaller object-

oriented units called chares. In Charm++, there is a clear distinction between se-

quential and parallel objects. This helps programmers have a clear knowledge of the

cost of each operation and to account for expensive remote data exchanges needed

for parallel computations. Also, it enables modular code development. For example,

a parallel object interface could invoke various sequential implementations of a given

algorithm with a same interface.

Parallel programming systems such as Legion [32], X10 [43], Chapel [41], and

Uintah [55] allow developers to describe computations as a sequence of tasks, similar

to cloud computing frameworks. This decouples the control flow, computations, and

communications, such that the runtime could automatically infer parallelism, and

opportunistically mask the communication overhead with computations. Legion [32]

uses an asynchronous task model, with explicit dependency and coherency models

over logical regions. Logical regions are encoded as tables over index spaces for effi-

cient referencing in each task’s metadata. Legion allows dynamic task spawning and

provides a mapping interface for each task such that the application could control

where each task executes in the cluster.

2.3.1 Mechanisms vs. Policies

HPC systems provide powerful abstractions to decouple control flow, computation

and communication, similar to cloud computing frameworks. Their fundamental dif-

ference, however, is that HPC systems only provide mechanisms; applications are ex-

pected to provide their own policies. Specifically, in HPC systems, application devel-

opers can tradeoff programmer productivity with application specific customizations

in favor of performance. On the other hand, cloud frameworks provide a generalized

execution model for easier code development that works well in many cases. However,

they leave almost no flexibility for application specific tunings. We elaborate on these

different approaches in the context of two major functionalities: task scheduling and
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task spawning.

Advanced HPC systems provide mapping interfaces for task scheduling in the

cluster. For example, Chapel [41] expresses the computations over domains and sub-

domains and allows fine-grained task placement over the hardware through the ab-

straction of locales. Locales are flat arrays of abstract locations used to map domains

to hardware. In Chapel, application correctness depends on proper implementation of

mappings by the developers. In contrast, in cloud frameworks the control plane takes

care of task scheduling and also enforces correctness. Legion [32], decouples correct-

ness from scheduling, and provides powerful task stealing mechanisms. However, it

requires application developers to deal with subtle corner cases of load imbalance or

machine failure. In contrast, cloud frameworks provide fault recovery and straggler

mitigation, automatically.

Task spawning interfaces in HPC systems expose fine-grained dependency among

tasks. This helps infer maximum parallel execution opportunities at the run time.

For example, in Legion [32], application developers specify task dependencies at the

granularity of the logical regions each task accesses. In addition, they explicitly

express privilege (e.g. read or write access) and coherence (e.g. atomic or concurrent

access) properties. This could be tedious for application developers. This has led to

the development of various domain specific languages (DSL) [112, 34], which leaves

the burden of learning new DSL interfaces on the shoulders of application developers.

In contrast, cloud frameworks introduce a few general task dependencies (e.g. narrow

or wide) through simple high level data-parallel operations (e.g. map and groupBy),

but lose many application specific optimizations. For example, the opaque key-value

interface of cloud frameworks does not suite applications with geometric localities

(e.g stencil operations).



Chapter 3

Control Plane: The Emerging

Bottleneck

This chapter starts by describing the common characteristics and requirements of

data analytics workloads. It then evaluates the scope and limits of CPU performance

improvements through a concrete case study. It shows that, with speedups in tasks,

once CPU-bound workloads are now control plane bound and the bottleneck exacer-

bates with further CPU performance improvements. The chapter further analyzes the

performance characteristics of in-memory computations, concluding that the results

are not just limited to the specific case study. Last, to further motivate the prob-

lem, it introduces a new workload, graphical simulations, that would require orders

of magnitude higher task throughput compared to traditional analytics workloads,

even at moderate scales. Chapter 7 shows how these applications run in Nimbus for

further evaluations.

Since cloud computing frameworks gained traction among engineers and data

scientists [48, 6], there have been significant efforts in the academia and indus-

try to improve performance of these systems on multiple fronts: networking plat-

forms [25, 44, 75, 105], in-memory computing and disk I/O efficiency [28, 128, 107],

and scheduling and straggler mitigation techniques [130, 29, 27, 99]. These efforts

culminated with an accepted fact in the community that the advanced analytics

workloads had become CPU-bound [98], meaning that job completion time is mostly

26
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Figure 3.1: Control plane in a cloud computing system: it interacts with the applica-
tion driver to execute application tasks on a cluster of workers. Control plane could
also be connected to the cluster manager for resource allocation purposes.

bound by the time worker nodes spend on computations. Specifically, the measure-

ments showed that improving the network and disk performance could reduce the job

completion time of modern analytics workloads with a median of at most 19% [98].

Recently, there has been a wave of research on improving the CPU performance of

analytics workloads such as code generation optimizations [1, 127, 101, 23], and cross

function data access optimizations [102]. The results are promising, showing orders

of magnitude speedups for common benchmarks [121]. The performance improve-

ments are not surprising [91], as widespread frameworks had focused on programmer

productivity by providing APIs in higher level and managed programming languages,

trading off performance for simplicity [128, 129, 31, 9]. As it is shown in this Chapter,

there is, still, room left for improvements.

This dissertation argues that control plane is an emerging bottleneck in modern

analytics workloads. Control plane translates the driver program of a job into smaller

tasks and assigns them to the worker nodes, as depicted in Figure 3.1. Speedup in

computations pushes control plane to process tasks at much higher rates to keep the

workers busy. Specifically, with tasks as long as a few milliseconds, only a handful

of workers could execute thousands of tasks per second. This is well beyond the

task throughput of available frameworks with dynamic scheduling features [99]. As

a result, the application completion time becomes control bound, meaning that the

progress is limited by the speed of control plane processing tasks.
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	//	Data	dependent	branch	
	while	(gradient	>	threshold)	{	
	 	//	Gradient	decent	algorithm	
		 	gradient	=	Gradient(data,	coeff)	
	 	coeff	+=	gradient	
	}	

(a) Driver program pseudocode.
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(b) Iterative execution graph.

Figure 3.2: Task graph and driver program pseudocode of logistic regression algo-
rithm. It uses the gradient descent algorithm for optimizing the feature coefficients.
The optimizer loop continues until the gradient drops below a certain threshold.
Gradient is a parallel operation that executes parallel tasks on data partitions.

3.1 Data Analytics Applications

Cloud computing workloads are increasingly advanced data analytics workloads [119],

including machine learning [45, 108, 87], graph processing [100, 30], natural language

processing [37, 116], speech/image recognition [69, 47], and deep learning and neural

networks [90, 66]. These applications are usually long running and iterative in na-

ture. For example, they run a loop until computations converge. To capture these

features effectively, most of the recent cloud frameworks support nested loops and

data dependent branches in their API [79, 128, 22].

As a running example in this Chapter, we consider logistic regression, a common

data analytics benchmark [53]. Figure 3.2 shows the pseudocode and task graph for

this algorithm. It uses the iterative gradient descent optimizer for calculating the

feature coefficients until the gradient drops below a certain threshold. Given the

driver program in Figure 3.2(a), the cloud framework generates the task graph as

depicted in Figure 3.2(b). The Gradient operation is partitioned into many parallel

tasks, each computing the gradient on a partition of the data. It is followed by a

global reduction to sum up the partial gradients from each partition. The goal of a

cloud framework is to not only compute individual tasks faster, but also to minimize

the completion time of the entire job.
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Figure 3.3: Execution time of a single gradient task of logistic regression implemented
in Spark’s Scala RDD, Spark’s Scala DataFrame, Java and C++. While DataFrame
optimizations improve the original RDD performance, it is still more than 8 times
slower than C++. The data size is 64MB, and the results are averaged over 30
iterations excluding the first iteration to allow JVM to warm up and JIT compile.

3.2 Optimizing Data Analytics

Data analytics that are implemented in high-level and managed programming lan-

guages used by many frameworks leave a great deal of room for performance opti-

mizations. As a concrete example, Figure 3.3 shows the execution time of a single

gradient task in logistic regression algorithm depicted in Figure 3.2, implemented

using 1) Spark’s classic RDD interface in Scala [128], 2) Spark’s newer DataFrame

interface in Scala [121], 3) Java, and 4) C++. The execution time shows a single

iteration of the algorithms over the input set of size 64MB. The numbers are av-

eraged over 30 iterations and the initial iteration is excluded to allow Java Virtual

Machine (JVM) to warm up and just-in-time (JIT) compile. As you can see, the

C++ implementation runs 51 times faster than the classic Spark implementation in

Scala. The Spark’s DataFrame interface benefits from the latest tungsten engine [1]

and whole-stage code generation techniques [23], but it is still slower than direct Java,

and even further away from C++ implementation.

A push for greater programmer productivity has led many cloud computing frame-

works to support higher-level languages [128, 31, 9, 129]. For example, Spark [128]

provides program interfaces in Java, Scala, and Python. However, Scala’s concise

and handy interface is favored by users: 70% of the Spark applications are written in
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Figure 3.4: Breakdown of the contributing factors in the performance difference be-
tween Scala and C++ implementation of logistic regression. These results are ob-
tained by decompiling the JVM bytecode, inspecting it, and removing the sources of
overhead, step-by-step, until the code matches the direct Java implementation. These
results are averaged over 30 iterations and discard the first iteration to allow JVM to
warm up and JIT compile.

Scala [127]. According to a survey, conducted in 2015, 88% of the Spark developers

picked Scala as their favorite development language [2]. This simplicity is one of the

main reasons Spark has gained significant traction among data scientists, and has

become the most active open source project in big data with more than 280 individ-

ual contributors [126]. Despite simplicity, the inefficiency of higher-level languages

becomes significant for in-memory computations.

3.2.1 Where Do the Cycles Go?

Figure 3.4 shows the breakdown of the sources of inefficiency in Scala implementa-

tion of RDDs compared to C++ and Java. Note that the Scala code is translated

into intermediate Java bytecodes, which is then JIT compiled and run by a JVM.

To determine the sources of inefficiency, we configured the JVM to output the JIT

assembly and inspected it. We inserted performance counters in the Scala code, and

reinspected the assembly to verify they captured the correct operations. To separate

different sources of overhead, we decompiled the JVM bytecodes that Scala generated

back into Java, rewrote this code to remove its overheads step-by-step, recompiled it,

and verified that the computational operations remained unchanged.
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The poor performance of the Spark’s Scala RDD implementation has three major

causes. First, since Scala’s generic methods cannot use primitive types (e.g., they

must use the Double class rather than a double), every generic method call allocates

a new object for the value, boxes the value in it, un-boxes for the operation, and

deallocates the object. In addition to cost of a malloc and free, this results in

millions of tiny objects for the garbage collector to process. 85% of logistic regression’s

CPU cycles are spent boxing/un-boxing. Second, the immutable characteristic of the

Spark’s RDD forces methods to allocate new arrays, write into them, and discard the

source array. For example, a map method that increments a field in a dataset cannot

perform the increment in-place and must instead create a whole new dataset. This

data duplication adds an additional factor of ≈ 2x slowdown. Third, using the Java

Virtual Machine has an additional factor of ≈ 3x slowdown over C++. This result

is in line with prior studies, which have reported 1.9x-3.7x for computationally dense

codes [70, 57]. In total, this results in RDD code running 51 times slower than C++.

The DataFrame interface bypasses the intermediate Java objects and directly op-

erates on binary blobs of data [31]. This removes the boxing/un-boxing overhead;

however, it still has the data copy and JVM overhead compared to a direct C++

implementation.

3.3 Control-Bound Data Analytics

Cloud computing frameworks decompose data parallel jobs in to many smaller com-

putation units, called tasks. Input dataset is partitioned into pieces, one for each

task. This allows the frameworks to speedup the job completion time through paral-

lelism. This is the common notion usually referred to as strong scaling: increasing the

compute power for solving a fixed size problem. The degree of parallelism depends on

the number of available computing slots on the workers, for example, the number of

CPU cores or GPU units allocated to the job by the cluster manager [67, 117]. Also,

straggler mitigation techniques usually recommend partitioning a job into more tasks

compared to the available computing slots [97]. For example, 10 partitions per core

is a rule of thumb for task granularity in favor of straggler mitigation [46].
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Figure 3.5: The control plane is a bottleneck in modern analytics workloads. Increas-
ingly parallelizing logistic regression on 100GB of data with Spark 2.0’s MLlib reduces
computation time (black bars) but control overhead outstrip these gains, increasing
completion time. This implementation uses Spark’s DataFrame interface.

Speedup in individual tasks, does not necessarily result in reduction in job comple-

tion time. For shorter tasks, the control plane overhead in processing and assigning

tasks becomes comparable to the task execution itself, and could dominate the job

completion time. As a concrete example, we consider running logistic regression in a

cluster of workers in Amazon EC2 [3] over a data set of size 100GB. Worker nodes use

c3.2xlarge instances with 8 virtual cores and 15GB of RAM. Further information

on the details of the experimental methodology is laid out in Section 6.1.

Figure 3.5 shows the performance of Spark 2.0’s MLlib logistic regression run-

ning on 30–100 workers. The implementation uses the DataFrame interface. While

computation time decreases with more workers, these improvements do not reduce

overall completion time. Spark spends more time in the control plane, spawning and

scheduling computations. In other words, as tasks are partitioned and spread over

more cores for strong scaling, controller cannot keep up with the execution speed, and

workers fall idle waiting to receive tasks from the controller. We measured Spark’s

controller to be able to issue ≈6,000 tasks per second. Execution over 100 workers in

Figure 3.5 requires more than 23,500 tasks per second.

These results show that with the task performance improvements, once CPU-

bound analytics workloads have now become control-bound. For example, Figure 3.6
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Figure 3.6: Effect of running logistic regression with optimized tasks in Spark. Spark-
opt shows the case where computations are replaced with spin-wait as fast as C++
tasks. Although Spark-opt tasks can run 51 times faster than RDD implementation, a
job using C++ tasks on 100 nodes only runs 2x faster: much slower than the expected
speedups. This is because the control plane becomes a bottleneck, wasting 97% of
the iteration time.

shows the results of implementing logistic regression with the classic RDD interface

that does not have the DataFrame optimizations. In this case, the tasks are long

enough that controller can keep up with the task execution rate, and the majority

of time is spent at the workers. Increasing the number of workers from 50 to 100

increases the compute power and helps reduce the job completion time. This aligns

with the previous work that found analytics workloads had become CPU-bound [98].

However, for the DataFrame implementation, control plane is the clear bottleneck:

80% of the run time is wasted at the controller when running on 100 workers. In this

case, increasing the number of workers hurts the job completion time due to the

control plane being unable to schedule tasks fast enough.

If the tasks where to run faster, the control plane overhead would take even a

bigger portion of the run time. To this end, we consider a hypothetical scenario

where Spark tasks run as fast as a C++ implementation. To emulate the C++ tasks,

we replaced the computation blocks of the Spark driver program with a spin-wait as

long as the C++ task. This represents the best-case performance of Spark calling

into a native code. The results are marked as Spark-opt in Figure 3.6. As you can see,
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97% of the iteration time is wasted at the controller when running on 100 workers.

Task optimization in Spark does not necessarily translate to a reduction in job

completion time. For example, while the computational tasks run 51 times faster than

RDD implementation, on 100 nodes the overall job runs only 2 times faster. Worker

nodes spend most of the time idle because the central Spark controller cannot schedule

tasks fast enough. Each core can execute 250 tasks per second (each task is 4ms),

and 100 nodes (800 cores) can execute 200,000 tasks per second, well beyond what

Spark controller can handle, ≈6,000 tasks per second.

3.3.1 Why Not Distribute the Control Plane?

As explained in Section 2.1.2, frameworks with distributed control planes [22, 94,

115, 24] remove the central decision maker and can execute hundreds of thousands of

tasks per second. However, the lack of a single coordinator makes dynamic scheduling

at runtime very expensive or even impossible. A single tasks migration between two

nodes could take as high as few hundred milliseconds, orders of magnitude longer than

the task itself. The specific details of why that is the case is framework dependent,

but fundamentally it stems from the fact that any changes in the scheduling without

an omniscient node requires expensive coordination procedures among all the nodes.

As a specific example, we explain the details of scheduling in Naiad [94].

In Naiad, nodes send and receive date messages with an associated key. Since

there is no centralization, there is a key-node mapping, such that every node could

route messages independently. At the beginning of a job, driver program is first

executed completely in the ”logical” mode; it is called logical since it does not trigger

any computations. During the logical execution, a dataflow is generated based on

the key-node mapping on each node. The dataflow specifies the computations and

communication channels among nodes.

A scheduling change in Naiad would essentially mean changing the key-node map-

ping. Note that even a small change could potentially affect the dataflow on every

node. For example, if a reduction operation is migrated, then every node needs to
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transmit partially reduced data to a new destination node. Without a central con-

troller, there is no way for isolated nodes to comprehend and account for the effects

of scheduling changes on the dataflow of the other nodes. As a result, any scheduling

change requires rerunning the driver program in the logical mode and regenerating

the dataflow on all the nodes. We have measured that it takes ≈230ms to generate a

simple, one-stage dataflow on Naiad nodes. This means even a single task migration

would induce ≈230ms latency.

3.4 Other Control-Bound Applications

This section shows that for many applications, the required task throughput is well

beyond what a centralized controller can handle. First, it considers a general sce-

nario based on a common application setup in data analytics. Then, it evaluates the

performance characteristics of an existing graphical simulation library, as a concrete

example of high performance applications.

First, we provide a simple back-of-the-envelope calculation of why efficient imple-

mentation of algorithms that operate on reasonably sized inputs and outputs have

tasks in the order of a few milliseconds. We consider a conservative case, where there

are only two variables, an input and an output. We use Amazon C3 instances as a

representative memory to CPU core ratio of 1.9GB of RAM per core.1 A c3.2xlarge

instance, for example, has 8 virtual cores and 15GB of RAM. A well-designed work-

load typically breaks each core’s work into ≈10 parallelizable partitions [46, 97]. For

example, an 8-core node runs 80 instances of a task. We consider a simple task with

a single input and a single output – a filter that reads integers and outputs the values

above a threshold. Assuming that the OS and program use absolutely no memory

and the system has no other data, the maximum size the input and output can be is

93.8MB (15GB/80/2). Depending on its selectivity, a C++ filter over 93.8MB takes

16–30ms on a modern processor.

1At time of writing, Amazon R3 instances provide a higher memory-to-core ratio, but are more
expensive per core ($0.0875/hour rather than $0.0525/hour for each core), so a given CPU-bound
task will cost more to compute.
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Figure 3.7: Task length distribution for a canonical water simulation. An example
application developed to run fast rather than fit the constraints of cloud frameworks.

To give a sense of how long tasks in optimized, computationally bound work-

loads can look like, we consider PhysBAM, an open-source computational fluidics

library, used by movie and special effects studios [51]. We use PhysBAM because it is

complex, open source, the result of several person-decades of development effort, used

significantly in production, and an example of a system that has been designed to run

fast, rather than fit the performance tradeoffs of cloud systems. A single time-step of

a PhysBAM simulation involves 26 computational stages operating over 40 different

variables. Currently, graphical simulation software packages are designed to run on a

single powerful server or small, 3–4 node high performance computing clusters. Being

able to run them in the cloud allows researchers to benefit from the elastic scalability

of the cloud providers to speedup computations. These applications are long running,

and hence require dynamic scheduling during the runtime for reactive load balancing

due to stragglers or failures in the cloud.

Figure 3.7 shows the task duration of a PhysBAM water simulation with a size of

5123-cells running over 8 workers (64 cores), with one partition per core. While most

CPU time is spent in 65–70ms tasks, the median task length is 13ms. Some tasks,

such as computing whether to execute the next iteration, have a maximum execution

time of hundreds of microseconds.

Applications with millisecond tasks easily saturate the controller even at moderate

scales. For example, with 10ms tasks, even a cluster with 10 workers (8 cores each) can
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Task Rate
Simulation Size #Worker (#Core) Main Loop Implicit Solver

5123-cell 8 (64) 63Kps 92Kps
10243-cell 64 (512) 394Kps 463Kps

Table 3.1: Task rate of a canonical water simulation for two different experimental
setups. Simulation has a main loop including explicit solvers and an inner loop for
an implicit solver. Task rates are reported separately for the implicit solver and the
main loop. Note that solver iterations have higher rate as the tasks are shorter.

execute 8,000 tasks per second, already beyond Spark’s task throughput (measured

at 6,000 task per second in Section 6.3.2). As another example, Table 3.1 shows the

task rate for a canonical water simulation in two different settings. As you can see, a

5123-cell water simulation distributed over 8 workers (64 cores) executes up to 92,000

tasks per seconds. If we were to scale out a bigger, 10243-cell simulation over 64

workers (512 cores) the task rate could go as high as 463,000 task per second.

3.5 Conclusion

As cloud systems optimize their CPU performance, they will have to deal with tasks

that are in the range of milliseconds or even microseconds. Specialized software and

hardware for computations on GPU [12, 22] will speedup the tasks even further. The

general trend shows a tremendous potential speedup for individual tasks. These short

tasks lead to a much higher task rate than current centralized controllers can support.

To keep the low cost, and dynamic scheduling provided by centralized frameworks,

there is a need for new control plane architecture. In the next chapter, we introduce

execution templates that increase the task throughput of centralized controllers by

orders of magnitude. This removes the control plane bottleneck such that individual

task speedups result in significant reduction of overall job completion time.



Chapter 4

Execution Templates

This chapter introduces execution templates as a novel abstraction for the control

plane. Execution templates are based on the observation that an increasing por-

tion of advanced analytics workloads are iterative in nature [119]. For example,

machine learning and graph processing algorithms usually deploy iterative optimiza-

tion techniques [87, 108, 111, 100]. Different iterations execute similar tasks with

minor differences. This results in repetitive patterns in the control plane that are

saved in templates. Instead of generating and assigning the tasks from scratch for

each iteration, templates are instantiated by loading few changing parameters. As we

will evaluate in Chapter 6, this improves the control plane performance by orders of

magnitude for optimized analytics.

An execution template is a parameterizable block of tasks that is installed on the

nodes during the runtime, and instantiated by filling in new parameters. Despite the

fixed structure of templates, they support dynamic scheduling and dynamic program

control flow. In addition to installation and instantiation, execution templates provide

two special mechanisms: edits and patching. Edits allow fine-grained updates in the

template to react to the scheduling changes. Patches enable controller to match the

state of workers to the fixed structure of the templates despite dynamic control flow

of the program. As we will see in Chapter 7, execution templates are general enough

to not only support traditional data analytics, but also complex applications with

nested loops and data dependent branches.

38
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The chapter starts by describing the execution model of the execution templates

and their requirements. It continues by elaborating on the repetitive patterns in the

control plane as a basis for the design of execution templates. It then introduces the

execution templates abstraction and the mechanisms they provide to increase task

throughput without sacrificing dynamic scheduling or dynamic program control flow.

4.1 Execution Model

Execution templates require a centralized control plane architecture. As depicted

in Figure 4.1, a centralized controller harnesses a cluster of workers allocated by the

cluster manager to perform the computations defined by a driver program. Execution

templates operate on the controller and its interfaces.

A driver program specifies the application logic for the controller. The details

of the driver program interface is framework dependent, however, at a high level, it

provides a lineage of computations, the input and output for each computation, and

their ordering. For example, Figure 4.1 shows an example driver program with two

stages: the map stage operates on the input data and produces intermediate results

that are fed in to the reduce stage.

Controller transforms the driver program into individual tasks for execution on

the workers. For data parallel computations the data set is partitioned in to smaller

pieces for parallel execution of the tasks. Not all tasks can run in parallel due to data

dependencies enforced by the driver program. To this end, the controller translates

the driver program into a task graph: a directed acyclic graph (DAG) with tasks as

vertices and task dependencies as edges. For example, Figure 4.1 shows a sample task

graph where data is partitioned into 4 pieces to perform the map stage in 4 parallel

tasks, followed by a single global reduction.

The controller partitions the task graph among the workers. For example, in

Figure 4.1 data partitions are split between the workers, hence the controller splits

the map tasks among them. The controller generates a per worker execution plan

for each worker. The execution plan includes the regular tasks in the task graph,

as well as additional copy tasks for data exchanges among the workers. The copy
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Figure 4.1: Generalized execution model assumed by execution templates. A driver
program specifies the application logic to a centralized controller. The controller
turns the driver program into a data parallel task graph and partitions the tasks
among a cluster of workers for execution. The controller generates a per worker
execution plan that includes the tasks and data exchanges among the workers for
global operations such as reductions. A cluster manager controls available resources
and can add/remove workers to/from the cluster, dynamically.

tasks explicitly specify the data object, the sender, and the receiver worker such that

workers can directly exchange data without looking up the controller. For example,

Figure 4.1 shows that controller assigns a copy task to the right worker to transmit the

intermediate map results to the left worker, which then performs the global reduction.

The controller assigns the tasks to the workers for execution, along with a meta-

data. The metadata, among other things, includes the tasks dependencies. Workers

use this metadata to queue the tasks and execute them in the correct order. For

example, in Figure 4.1, the controller sends a batch of task metadata to the workers,

and workers create the execution plan locally for correct execution.
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4.1.1 Framework Requirements

Conceptually, execution templates can be incorporated into many existing cloud

frameworks. Incorporating them, however, assumes certain properties in the frame-

work’s control plane to satisfy their execution model as drafted above. There are

three major requirements:

1. Controller partitions and schedules the task graph at the granularity of individ-

ual tasks. Also, workers can receive and execute individual tasks. Fine-grained

tasks are a prerequisite to support fine-grained, dynamic scheduling; they define

the minimum scheduling change that a system can support.

2. Workers can directly exchange data. Within a single template, one worker’s

output can be the input of tasks on other workers. As part of executing the

template, the two workers need to exchange data without going through a cen-

tral controller, which would become a bottleneck. Controller conducts global

operations that require data exchanges among workers proactively by sending

copy tasks, instead of reactively responding to data lookups by the workers.

3. Workers maintain a queue of tasks and locally determine when tasks are runnable.

Workers can receive a batch of tasks from the controller, most of which are not

immediately runnable because they depend on the output of prior tasks. A

worker must be able to determine when these tasks are runnable without going

through a central controller, which would become a bottleneck. This requires

the workers to hold and manage local state for proper execution.

Depending on the framework, satisfying all these requirements might need few

simple or drastic changes in the control plane design of available frameworks. The

implementation details depend on the specifics of the underlying framework. For

example, since Spark [128] workers are stateless, deploying execution templates re-

quires implementing the task queue and local task graph for the workers. Also, Spark

workers resolve data exchange dependencies through reactive lookups at a centralized

block manager at the controller, while execution templates require local metadata for

direct data exchanges among the workers.
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4.2 Repetitive Patterns

A great portion of cloud workloads is long running and iterative. Cloud comput-

ing applications are increasingly advanced data analytics including machine learn-

ing [45, 108, 87], graph processing [100, 30], natural language processing [37, 116],

speech/image recognition [69, 47], and deep learning and neural networks [90, 66].

These applications are usually implemented on top of frameworks such as Spark [128]

or Naiad [94], for seamless parallelization and elastic scalability. A recent survey [10]

of Spark users, for example, shows 59% of them use the Spark machine learning li-

brary [9]. Efforts such as Apache Mahout [8] and Oryx [19] provide machine learning

libraries on top of Spark. Cloud providers, in response to this need, now offer special

services for machine learning models [18, 4].

One important property of advanced analytics is that they are iterative in na-

ture: they execute a loop (or set of nested loops) until a convergence condition. For

example, Figure 4.2 shows the pseudocode and task graph for a training regression

algorithm called cross-validation technique [53]. The data set is split into training

and estimation sets, hence the name cross-validation. The algorithm consists of a

nested loop. In the inner loop, the training data is fed to an iterative optimizer, e.g.

gradient descent, to optimize the feature coefficients. These coefficients are then used

in the outer loop for prediction over the estimation data. Depending on the estima-

tion error, the model parameters are updated for another iteration of the algorithm.

The loop continues until the estimation error drops below a certain threshold. In

addition, advanced analytics are long-running, meaning that the loops run for many

iterations. For example, deep neural networks might run for several weeks over the

production data sets to generate the optimized link weights.

The execution template abstraction is motivated by the fact that the iterative na-

ture of advanced analytics results in repetitive patterns in the control plane. Different

iterations generate and run the same DAG of tasks with few minor changes. For ex-

ample, the Gradient and Estimate operations in Figure 4.2 can each generate many

thousands of tasks per iterations in the task graph. However, the task graph structure

is identical for each iteration, except that the same vertex in two iterations can have
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while	(error	>	threshold_e)	{	
	while	(gradient	>	threshold_g)	{	
	 	//	Optimization	code	block	
		 	gradient	=	Gradient(tdata,	coeff,	param)	
	 	coeff	+=	gradient	
	}	
	//	Estimation	code	block		
	error	=	Estimate(edata,	coeff,	param)	
	param	=	update_model(param,	error)	

}		

(a) Driver program pseudocode.
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(b) Iterative execution graph.

Figure 4.2: Task graph and driver program pseudocode of a training regression algo-
rithm. It is iterative, with an outer loop for updating model parameters based on the
estimation error, and an inner loop for optimizing the feature coefficients. The driver
program has two basic blocks corresponding to inner and outer loops. Gradient and
Estimate are both parallel operations that execute many tasks on partitions of data.

different values across iterations, such as the coeff and param parameters. Further-

more, task identifiers change across iterations. Instead of processing the tasks from

scratch for each iteration, control plane can leverage the fixed structure to improve

the performance.

Many systems have observed and leveraged this iterative nature for various pur-

poses. For example, Spark [128] caches the data sets in-memory to improve the

performance when data set is referenced frequently, as in iterative applications. The

Ernest system [119] leverages this observation for predicting the performance of the

iterative analytics by sampling the performance of a few iterations and extrapolating

the results to the entire execution lifetime. Execution templates take advantage of

the repetition for caching the control plane decisions. Next, we introduce execution

templates and how they capture these repetitive patterns to improve the performance

of the control plane.

4.3 Abstraction

An execution template is a parameterizable list of tasks. It caches the repetitive

segments of the task metadata and leaves the changing parts as parameters. The fixed

structure of the template includes executable functions, task dependencies, and data
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Figure 4.3: An execution template is a parameterizable list of tasks. The fixed part
of the template includes the executable functions, task dependencies, and data access
lists. A new batch of tasks are spawned by loading the parameters of a template.

access list. The parameter list includes the task identifiers and runtime parameters

passed to each task. For example, Figure 4.3 shows how only by loading new task

identifier and parameters a new batch of tasks are spawned from the template.

Execution templates are installed during the run time for the repetitive sections of

the task graph. After installation, instead of generating and assigning the task from

scratch, templates are instantiated with a single message that fills in the parameter

list of the template. This way, a new iteration of all the tasks cached in the template

execute with a single light message with the payload of only changing parameters.

Upon instantiation, not all the tasks in a template are immediately runnable. The

dependencies in the task graph enforce an ordering among the tasks. Worker nodes

need to properly order and execute the tasks within a template. To this end, the fixed

structure of the template also includes the task dependencies in the form of a task

graph DAG, as depicted in Figure 4.3. With the local task graph, workers could run a

batch of tasks without receiving explicit synchronization signals from the controller,

which could become a bottleneck in a centralized control plane.

4.3.1 Template Granularity

Larger templates are more efficient, since the template instantiation cost is amortized

over a greater number of tasks. At one extreme, each individual task could be a

template, which results in the lowest efficiency. At the other, the entire task graph of
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Figure 4.4: An actual run of the task graph in Figure 4.2. Depending on the computed
data, the inner loop has different number of iterations in different instances of the
outer loop. To keep the dynamic control flow, templates are installed and instantiated
at the granularity of single basic blocks. This way, the number of times a basic block
is executed could vary based on the computed data at runtime.

the driver program could potentially be one giant template. This case has the highest

efficiency, as the entire task graph is executed with a single instantiation message.

However, templates cannot go beyond a branch in the driver program without

constraining the control flow. To see why that is the case, note that once a template is

instantiated all the cached tasks within the template are triggered for execution. This

implies a deterministic control flow within a template. A driver programs with data

dependent branches (e.g. conditional while loop or data dependent if/else statement)

cannot be captured with a single template. In other words, loop unrolling and other

batching techniques [118] cannot capture nested loops and data dependent branches.

For example, Figure 4.4, shows an actual run of the task graph in Figure 4.2. For

the first iteration of the outer loop, the inner loop converges after three iterations.

In the second iteration of the outer loop, the inner loop converges only after two

iterations. The convergence rate depends on the computations and is not known in

advance. Caching the entire iteration in a template only allows fixed number of inner

loop iterations, and cannot differentiate between these two cases.

To enable data dependent branches and nested loop structures, execution tem-

plates work at the granularity of basic blocks. A basic block is a code sequence in

the driver program with only one entry point and no branches except the exit [103].
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A basic block is the largest unit of execution in the driver program with determinis-

tic control flow. Hence, generating templates at the granularity of the basic blocks

maximizes the size of the templates without constraining the control flow.

For example, the task graph in Figure 4.2 has two basic blocks, one for the inner

loop and one for the outer loop operations. Figure 4.4 shows the boundaries of these

basic blocks. For each instance of the inner loop its according template is instantiated

until convergence. Similarly, for every outer loop iteration the template for the outer

loop basic block is instantiated.

4.3.2 Template Preconditions

Instantiating the execution template has an implicit assumption that the data objects

in the data access lists are already in the local memory on the workers. Since a basic

block can have multiple entry points, the data objects on the workers may not always

match the data access lists. As a concrete example, the execution template for the

inner loop basic block in Figure 4.2 needs to have the updated model parameters,

param, on every worker. As depicted Figure 4.5, there are two cases in which an inner

loop basic block is entered: 1) after itself, and 2) after the outer loop. In the fist case,

param is inductively already on every worker. However, in the second case, param

exists only on the node that reduced it.

We define template preconditions to be the list of data objects that are required

for the template to start execution properly. The worker state needs to match the

precondition list before template instantiation. The details of a precondition list is

framework dependent. For example in case of a framework with immutable data

model (e.g. Spark), it simply lists the required data objects. But in a framework

with mutable data model (e.g. Nimbus), the preconditions further specify whether

the latest update of the data is required or any copy of the data would suffice. For

example, for the write-only operations (e.g. intermediate reductions) the initial state

of the data is not important.

In frameworks with mutable data model, enforcing the preconditions of the tem-

plates are more complicated, since it requires tracking the updates to the data objects
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Case	1:	entered	from	the	same	basic	block Case	2:	entered	from	the	outer	loop	basic	block

Figure 4.5: A basic block can be entered from different parts of a program. As a
result the template preconditions may not hold in all circumstances. Here, the inner
loop basic block can either follow itself (case 1), or the outer loop (case 2). The inner
loop template requires the reduced params value to be on all the workers, but in the
second case the updated value only exists on the reducer worker.

as well. However, they have two major benefits. First, for data intense applications

they allow in-place operations. This is for example crucial for graphical simulations.

Second, since the data ids are persistent beyond a single write operation, the data

access reference could be cached as the fixed part of the execution template to reduce

the payload size of the instantiation messages. The Nimbus framework introduced in

Chapter 5 has a mutable data model.

4.4 Mechanisms

Execution templates are installed and instantiated at run time. These two mechanisms

result in performance improvements in the control plane by caching and reusing repet-

itive control flow. At first glance, the fixed structure of the templates might seem

inconsistent with the design goal of having fine-grained flexible scheduling. However,

templates have an edit mechanism to deal with dynamic scheduling. Also, the fixed

precondition list of a template may not match the worker state in all different entry

points into a basic block. To this end, execution templates support a patching mecha-

nism to handle dynamic program control flow. Each mechanism, and their semantics

are discussed in the following.
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Figure 4.6: Controller installs templates on the workers. The first time a basic block
in the task graph is scheduled for execution, controller sends the tasks to the workers
one-by-one, and also marks the beginning and end of the basic block with explicit
messages. In addition to executing the tasks normally, workers install a copy of the
tasks sent within the basic block window as template for later instantiation.

4.4.1 Installation and Instantiation

As explained above, execution templates are installed at the granularity of the basic

blocks in the driver program. Basic blocks can be detected either by static analysis, or

through explicit annotations by the programmer. Either way, once controller detects a

new basic block launched by the driver program, it initiates the template installation

procedures. In addition to normally assigning the tasks in the basic block to each

worker, it also marks the beginning and end of the tasks belonging to each basic block

with explicit messages to the workers. This concept in depicted in Figure 4.6. Once

a worker receives a StartTemplate message, it starts installing a new template. In

addition to normal execution of the task, it adds a copy of the tasks to the template

until the EndTemplate message is received.

For later iterations, controller instantiates the templates by loading the new pa-

rameters in the template, as depicted in Figure 4.7. Once worker receives the instan-

tiation message, it clones the tasks in the template and executes them with the new
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Figure 4.7: The template is instantiated with a single message that updates the tem-
plate parameters including task identifiers and parameters passed to each function.
Instantiation spawns all the cached tasks in the template without generating and
sending them one-by-one. Each template has a list of preconditions that specifies the
data objects needed to execute the tasks cached in the template, properly.

parameters provided by the controller. The details of the parameters list is framework

dependent.

Depending on the partitioning strategy and available resources, controller could

install multiple versions of a template corresponding to a single basic block. This

enables a low cost switch between drastic scheduling changes, for example due to

changes in allocated resource. Specifically, this is helpful as controller can install

different execution plans on the workers depending on the cluster manager resource

allocation decisions. Workers cache multiple execution templates, so a controller

can move between several different schedules by invoking different sets of execution

templates. Accordingly, the instantiation message could pick among different versions

of the templates installed at the workers.

For example, Figure 4.7 shows the templates where there are two tasks assigned

to the worker. If controller were to assign more or less tasks in the parallel stage

to the worker, or migrate the reduction task to another worker, then a new set of

templates could be installed at the worker for the same basic block.
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Figure 4.8: Controller can modify the content of the templates at the task granularity
with the edit mechanism. Edits change the content of already installed templates in
place in response to minor scheduling changes, instead of paying the cost of installing
a complete new template. Edits keep the control plane overhead proportional to the
extent of scheduling changes.

4.4.2 Edits

Scheduling decisions change over time: the decisions made when a template is installed

might not hold for later iterations. This is specially the case for long running appli-

cations. Installing the complete template for every single change in the scheduling

is expensive. First, for minor changes such as migrating a task between two workers

the installation cost might be overwhelming and even outstrip the gains from the new

scheduling plan. Second, the speedup gains from templates are only realized after the

installation phase for the instantiation of later iterations. For transient changes (e.g.

temporary stragglers), the installed templates might not even be relevant for later

iterations for fast instantiation. Analogous to a memory cache where invalidating an

object does not invalidate the entire cache, small changes in the template should not

require complete template installation.

To this end, templates support edits to change an existing execution template.

Figure 4.8 shows how edits manifest in the control plane: they modify already installed
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Figure 4.9: Due to dynamic program control flow, template preconditions may not
always match the data objects on the workers. Before instantiation, controller checks,
and if needed, patches the worker states to match the preconditions of the templates.
Here, for the first iteration of the inner loop after the outer loop, the reduced params
value is only on the reducer worker. Before instantiating the template, controller
patches the worker states by updating the reduced value on all the workers. The
following instantiations do not need any patching.

templates in place. Edits are issued by the controller before the instantiation message

and modify the template’s data structures. Depending on the extent of changes,

controller can only edit a few tasks in a template, or install a new version of the

template for extensive changes. Edits make the control plane overhead scale gracefully

with the size of scheduling changes. If large changes are needed, the controller can

install new templates.

4.4.3 Patching

Patches allow templates to efficiently handle dynamic program control flow. This

is important when loop conditions are based on data, such as running until an error

value falls below a threshold, or data dependent if/else blocks. With dynamic program

control flow, there could be multiple nondeterministic entry points to a basic block.

As a result, worker states may not meet the preconditions of the associated execution

templates in all instantiation cases. In the case of precondition mismatch, controller

patches the worker state. Patches are sent along with the instantiation message as a

dependency for the template: no task from the template can execute until the patch

is completely applied.
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For example, Figure 4.9 shows instantiating a series of templates for the task graph

in Figure 4.2. When the inner loop runs after the outer loop, the param value resides

only on the reducer worker. So, controller patches the worker states by updating the

param on all the workers before instantiating the inner loop template. The patch

could be as simple as loading a new data from a networked file system, or data copy

among workers; the details are framework dependent. When the inner loop runs after

itself, the preconditions are already satisfied and there is no need for patches.

The driver program controls job execution and decides which basic block to exe-

cute next. Since the controller, and not the workers, tracks the entire task graph spec-

ified by the driver program, controller has the sole knowledge to make sure that the

template preconditions satisfy before instantiation. Controller reacts to the driver’s

execution, and patches templates if needed, on the fly. Patching is analogous to reg-

ister allocation for basic blocks in compilers: to enforce the correct execution of the

internal block, compiler makes sure that registers hold correct variables for the basic

block at each entry point.

4.4.4 Template API

Execution templates are installed and instantiated transparent to the application

and driver program. From the application perspective, whether controller installs or

instantiates the templates has no effects on the program functionality. Except for

explicit annotation by the programmer that marks the beginning and end of each

basic block, applications do not need to change at all to support execution templates.

Control plane guarantees correct execution, and provides same semantics as running

without templates. Available frameworks could implement execution templates sup-

port with complete backward compatibility with the programs already written.



Chapter 5

Nimbus

This chapter describes Nimbus, an analytics framework designed to support fast,

optimized tasks written in lower level languages with similar performance. Nimbus

meets all three requirements that are needed for execution templates as drafted in

Section 4.1. After describing the architecture, execution model, and data model of

Nimbus, the chapter provides the details on how execution templates are implemented

in Nimbus along with the optimizations and program analysis to make them efficient.

Like Spark [128], Naiad [94], and TensorFlow [22], Nimbus is designed to run

computationally intensive jobs that operate on in-memory data across many nodes.

Nimbus has a mutable data model, which is crucial for in-place operations for memory

intensive applications. The mutable data model lends itself to further optimization in

execution template, as data objects could become the static segment of the templates.

We have developed Nimbus in C++, and the task speedups discussed in Chapter 3

are readily realized in application implemented for Nimbus.

Nimbus has a task-based execution model. A driver program specifies the individ-

ual tasks along with a metadata and submits them for execution to the centralized

controller. The task’s metadata includes explicit data access patterns and task de-

pendencies such that the controller can generate a task graph with tasks as vertices

and dependencies as edges. Controller then transforms the tasks graph into a per

worker execution plan. The execution plan includes explicit data copy tasks to real-

ize maximum parallelism on the workers and handle inter-worker synchronizations.

53
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Figure 5.1: Overall design of Nimbus. The driver program submits the tasks along
with a metadata of data access patterns and dependencies to the centralized con-
troller. Controller generates a task graph with tasks as vertices and dependencies
as edges, and then transforms it to per worker execution plans. The execution plan
includes copy tasks for data exchange among the workers.

Figure 5.1 depicts Nimbus’s overall design and execution model.

Nimbus supports traditional data analytics, including a machine learning library

with supervised and unsupervised learning algorithms, and graph algorithms. Addi-

tionally, Nimbus distributes hybrid graphical simulations. This chapter describes the

API with data analytics examples. Chapter 7 covers the details of porting graphi-

cal simulations into Nimbus. The core Nimbus library, excluding the applications,

is about 35,000 semicolons of C++ code. The code repository is open source and

can be accessed at github.com/omidm/nimbus. It includes Nimbus runtime, applica-

tions, documentations, and a glossary of scripts for deployment of Nimbus in Amazon

EC2 [3]. The rest of this chapter describes Nimbus design and how it implements

execution templates, in details.

5.1 Architecture

Nimbus has a centralized control plane architecture similar to MapReduce [48], and

Spark [128]. Figure 5.2 shows the overall architecture and components of Nimbus.

https://github.com/omidm/nimbus
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Figure 5.2: Nimbus architecture: central controller keeps the global task graph and
data mapping, and schedules tasks for execution at workers. Workers keep local
queues of tasks and can directly exchange data if needed. Controller-worker and
worker-worker connections are TCP/IP pipes.

5.1.1 Controller

Controller has four major modules: data manager, task manager, server, and sched-

uler. Data manger keeps track of data partitions and their locations in the cluster. A

data partition could have multiple instances either in the main memory or on the per-

sistent disk of different workers. Task manager generates and tracks the distributed

execution plan of the application over the workers. Controller server is responsible

for communications between controller and the workers, and handles command ex-

changes among them. Controller scheduler enables dynamic load balancing and task

partitioning among the workers.

In Nimbus, workers can dynamically join or leave a cluster managed by a con-

troller. Controller server listens on a publicly announced port number for new TCP

connections from workers. For each new worker that connects to the controller, server

opens a persistent TCP connection between controller and the worker. Controller

uses asynchronous remote procedure calls (RPC) over the TCP connection to assign

tasks to the workers, and receive heartbeat messages and execution results from the
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workers. The TCP connection is kept live to avoid the TCP slow start for each RPC.

Controller has a scheduling interface that allows dynamic resource allocation and

task partitioning among the workers. Scheduler supports both batch and per task

assignments interfaces. Specifically, scheduler can assign a batch of tasks to the

workers at once. As we will see, this is important to enable execution templates

under Nimbus, as batch assignments are required to instantiate a batch of tasks at

the workers in the form of a template.

5.1.2 Workers

Each computing machine in the cluster runs an instance of the Nimbus worker.

Worker manages the resources at the machine such as shared memory, CPU cores,

Network I/O, and disk accesses. Worker allocates memory for the data objects in

the main memory for task executions. Also, it can save persistent copies of the data

objects on the disk upon controller requests, for example for checkpointing purposes.

Each worker has a task queue that holds the tasks received from the controller.

Controller assigns tasks along with explicit dependency metadata such as prior tasks

that needs to complete, or a data exchange. The details of this metadata and explicit

dependencies are discussed below (Section 5.2). Once all the dependencies of a task

are satisfied, worker pushes the task to a ready queue. Worker has a thread pool

that executes the tasks in the ready queue on the CPU cores. To avoid unnecessary

context switches, there are as many threads as the number of cores at the worker.

Workers can directly exchange data through TCP connections among them. Each

worker has a data exchanger module that listens on a specific port number for TCP

connections. Worker announces the port number to the controller once it connects for

the first time. If data exchange is necessary among the workers, controller explicitly

sends copy tasks to the workers. Each copy task has a metadata that includes receivers

listening port and IP address, such that the sender can initiate the communication

with the receiver. Nimbus worker has a push model for data exchanges, meaning that

transmission starts by the sender once the data is available. This helps mask the

communication latencies with the task execution at the workers.
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5.2 Execution Model

Each instance of an application that runs in Nimbus is called a job. Similar to

other data analytics frameworks [48, 128, 94], Nimbus has data parallel operations to

increase memory bandwidth and aggregate computation available to the job. Data

sets are partitioned into smaller pieces and spread among the workers. There are as

many computation units, called tasks, as the data partitions.

Nimbus has a task-based driver program abstraction similar to Legion [32]. The

Nimbus driver program specifies the application logic at the granularity of individual

tasks. For example, Figure 5.1 shows that driver program generates and submits

individual map and reduce tasks to the controller. Each tasks has a metadata that

specifies its data access patterns and dependencies, explicitly. Nimbus allows arbi-

trary tasks dependencies patterns among tasks. Note that this is more general than

the stage-by-stage data flow model in counterpart frameworks such as Spark [128]

and MapReduce [48]. The stage-by-stage model is restricted by the narrow or wide

dependencies. However, there are many applications that does not fit this model. For

example, as we will see in Chapter 7, graphical simulations have geometric dependen-

cies that require more complex task dependencies.

5.2.1 Program Control Flow

Nimbus allows dynamic control flow based on the computed data at runtime. A

task, in addition to operating on the data objects, can also spawn other tasks for

execution. Specifically, tasks execute on the workers and might submit other tasks

to the controller for scheduling. Controller then partitions and assigns the submitted

tasks back to the workers for execution. Figure 5.3 shows the task spawning concept

with an example. In this scenario, the black task spawns three other tasks and submits

them to the controller for scheduling, which are then assigned back to the workers for

execution.

The task spawning model for the program control flow is similar to continuation

passing style [114], where tasks are continuations. Driver program is a lineage of tasks

that execute on the workers. Application developers provide an execution function
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Figure 5.3: A task spawning example scenario in Nimbus: a) the black task that
runs on the left worker spawns three tasks and submits them to the controller, b)
controller receives the tasks from the worker, c) controller partitions and assigns the
tasks back to the workers for execution, d) workers execute the tasks.

for each of the tasks, which might include spawning other tasks. Every application

needs to provide the execution function for a special task, called main. Controller

starts the job by executing the main task on one of the workers, and the rest of the

tasks are generated and scheduled for execution from there.

Nimbus task spawning model allows dynamic control flow and data dependent

branches in the driver program. Tasks could change the computation course of a

job during runtime by spawning different set of tasks either through deterministic

decisions or nondeterministic and dependent on the values held in the data objects

that the task accesses. For example, depending on an error value reduced in a data

object, the task can either spawn more tasks for another iteration of the optimiza-

tion or terminate the loop and spawn the tasks for the operations after optimization.

Spawning and scheduling at task granularity satisfies the first requirement for execu-

tion templates, as drafted in Section 4.1.1.

The task spawning model, while flexible, induces extra overhead on the control

plane as the tasks are submitted to the controller one-by-one, and then assigned back

to the workers for execution. As we will see in Section 5.5, execution templates help

optimizing this pin-pong effect between controller and workers.
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Figure 5.4: An example task graph in Nimbus. The task graph has task metadata
as vertices and before set dependencies as edges. Also, the tasks metadata specifies
the read/write access patterns, execution function, and a binary blob of parameters
passed to the function.

5.2.2 Task Graph

In addition to a globally unique identifier, each task when spawned has a metadata

of 5 pieces:

1. Read set of data objects to read.

2. Write set of data objects to write.

3. Before set of tasks that need to finish executing before the task starts.

4. Function name that gets called for task execution over the data objects.

5. Parameter as binary blob that are passed to the task function.

The task metadata specifies the explicit data access patterns in terms of read/write

sets, and explicit task dependencies in terms of before sets. The before set enforces

the ordering and data flow among the tasks. Nimbus driver program is compiled as

a dynamically linked library, and each worker has a copy of it. Workers load and run

the execution function for each task based on the function name in the metadata.

Once controller receives the spawned tasks, it generates a directed acyclic graph

(DAG), called task graph, with task as vertices and task before set information as

edges. Each vertex holds the metadata of the task as well. For example, Figure 5.4
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shows a simple task graph with three tasks. The arrows between the tasks show the

ordering based on the before set relations. Here, for example, task C has tasks A and

B in its before set. This enforces C to run only after A and B finish, such that C

reads in the updated second and third objects that are written by A and B. We will

use this task graph as a running example in the rest of this Chapter.

The read/write/before set abstraction is general enough to cover any data ac-

cess pattern or dependencies. However, filling in and handling the task metadata

information could be tedious for the application developer. Nimbus provides simple

interfaces to fill in the task metadata for classic stage-by-stage data analytics, or geo-

metric based operations for applications such as graphical simulations. The interface

is covered in Sections 5.6 and 7.4.

5.2.3 Execution Plan

Depending on the available resources, controller partitions and transforms the task

graph to per worker execution plans. In addition to the tasks in the task graph,

controller inserts special data copy tasks in the execution plan for data replication on

a worker locally, called local copy, or synchronization among workers, called remote

copy. Additionally, controller updates the original before set of the tasks in the task

graph by removing cross worker dependencies and adding necessary copy tasks to

enforce communication and computation orders for correct execution.

Local copy tasks enable controller to exploit maximum parallelism among the

tasks in the task graph. It helps remove the read-write conflicts between the tasks

that could potentially run in parallel on the same worker. Specifically, if one of the

tasks has read and write access over a data object, and another tasks has a read-only

access, and there are no other explicit before set dependencies, they could potentially

run in parallel. However, if both tasks share a same instance of the data object,

they are forced to run serially: the task with the write access could run only after

the task with the read-only permission finishes. Controller detects such conflict in

the tasks graph and resolves them by deciding whether to duplicate the data objects
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Figure 5.5: An example execution plan corresponding to the task graph in Figure 5.4.
In addition to the tasks in the task graph, the execution plan includes explicit data
copy tasks for sending and receiving data. Controller replaces inter-worker dependen-
cies with copy tasks, such that workers can synchronize execution, independently.

through local copy commands and by giving each tasks its own data copy. The read-

write conflict happens often in scientific applications (e.g. graphical simulations) with

overlapping ghost regions.

Remote copy tasks realize data exchanges among workers. To avoid the cost of

data migration among workers, controller normally assigns tasks to where data exists.

However, there are cases where there is no single worker that holds all the data objects

needed by a task, and data exchange among workers is inevitable. For example, in a

global reduction, partial results computed on each worker are gathered on one worker

for final reduction. Since Nimbus controller has the global view of the data objects,

it coordinates the required data exchanges among the workers proactively. For each

data exchange controller assigns a send copy task to the sender worker, and a receive

copy task to the receiving worker.

For example, Figure 5.5 shows the execution plan over two workers corresponding

to the tasks graph in Figure 5.4. In this scenario controller has decided to run tasks

A and C on one worker, and task B on the other. Task C that runs on the left

worker requires the updated third object on the right worker. So, controller inserts

send and receive copy tasks on the workers to exchange data. Copy tasks explicitly

name the workers and data object involved in the transfer, such that workers can
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directly exchange data. This satisfies the second requirement for execution template,

as drafted in Section 4.1.1.

Controller assigns tasks to the workers along with their before set. This enables

the workers to order a batch of tasks, locally. However, the before set might differ

from the initial before set in the task graph. Note that, after partitioning a task

graph among workers, some tasks on one worker might appear in the before set of

tasks in the other worker. To avoid flooding explicit synchronization messages among

workers, controller replaces the inter-worker dependencies with copy tasks: a data

exchange acts as an implicit synchronization. For example, in Figure 5.5, controller

updates the before set of task C by replacing task B with the receive copy task.

By adding explicit copy tasks, workers execute a batch of tasks locally based on the

before set ordering, without any further explicit notification by the controller. In this

design, controller can assign tasks beyond a synchronization point since inter-worker

dependencies are resolved, proactively. This is similar to data flow graph model in

TensorFlow [22]. Once controller assigns the tasks, workers can independently order

and execute them. This satisfies the third requirement for execution templates, as

drafted in Section 4.1.1.

5.3 Data Model

In Nimbus, each data set is defined as an instance of a data type along with the

partitioning information. The data set is partitioned into many data objects with the

same type, so that tasks can operate on them in parallel. Each data type defines four

methods: serialization, deserialization, create and destroy. The first two methods are

used for transmitting data objects among workers or saving and loading them off the

persistent disk. The second two methods are used to allocate and deallocate the data

objects on the worker nodes.

In addition to a unique identifier, data objects have an associated geometric

bounding box. The data set is defined over a global bounding box and based on

the partitioning information, each data objects covers a sub-domain. This is quite

handy for operations with geometric locality, such as graphical simulations. For data
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analytics you can think of data objects partitioned along one dimensional space.

Chapter 7 elaborates on the benefits of explicit geometry for graphical simulations.

5.3.1 Mutable Data

Data objects in Nimbus are mutable. Tasks with write access can mutate the data

objects. Supporting in-place modification of data avoids data copies and is crucial

for computational efficiency because writes and reads operate on the same cache line.

Also, for memory intensive computations, it saves memory space since there is no

need for memory allocation for intermediate placeholders.

In-place modification also has two crucial benefits for execution templates. First,

multiple iterations of a loop access the same objects and reuse their identifiers. This

means the data object identifiers can be cached in a template, rather than being

a runtime parameter. This makes templates more efficient to parameterize, as the

object identifiers can be cached rather than recomputed on each iteration. Second,

mutable data objects reduce the overall number of objects in the system by a large

constant factor, which improves lookup speeds at the controller.

Tasks with write access privilege mutate the data. To avoid inconsistencies, Nim-

bus does not allow parallel writes to a data object. All tasks with a write access to a

data object have to be ordered in the tasks graph with either direct or indirect before

set relations. In other words, each data object has a well-defined lineage of tasks that

mutate the object. If parallel writes are detected, Nimbus raises a runtime error.

5.3.2 Data Versioning

Mutable object means that there can be multiple copies and versions of an object in

the system. For example, for the scenario in Figure 5.5, before executing the tasks

both workers have a copy of the first data object. However, after task C executes,

the first data object is updated on the left worker, while the right worker copy of

the first object becomes obsolete. Each data object in the system therefore combines

an object identifier with a version number. The Nimbus controller ensures, through

data copy tasks, that tasks on a worker always read the latest value according to the
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program’s control flow.

The data version that a task receives depends on the data flow in the task graph.

To be concrete, we define the version context to be the mapping between a data

object id and a version number. Each task has an input version context based on

which it accesses the data objects, and an output version context that it produces.

The version of a data object, d, in the version contexts of a task, t, is determined

with the following two simple rules:

1. If t has write access on d, then the version of d in the input version context of t

is incremented by one in the output version context of t. Otherwise, the input

and output versions are equal for d.

2. The version of d in the input version context of t is the maximum version among

all the versions in the output contexts of the tasks in the before set of t.

These two rules concretely defines the data flow in the task graph based on the before

set information and data access patterns.

In theory, to determine the data version for each task, controller can calculate the

input and output context for every task according to the rules above. The computa-

tion complexity of such naive approached would be O(TD), where T is the number

of tasks, and D is the number of data objects. Since, the number of data objects and

the number of tasks are within a constant factor of each other, the complexity is in

fact quadratic in T , O(T 2). This is not tractable for controller, especially at scale.

Instead, Nimbus leverages the lineage of the data objects to expedite the versioning

process. Specifically, controller keeps track of the lineage of the tasks with write

accesses over each data object. This requires a doubly linked list data structure with

space complexity of O(dD), where d is the depth of the task graph. Then, for every

version lookup, controller traverses the lineage backward and finds the first ancestor

of the tasks in the linage. The ancestor relation is defined according to the before

set metadata in the task graph. That version is the version that the task receives in

the task graph. With this approach, only the data objects in the read/write set of

the task are resolved, and hence the computation complexity is O(|A|T ), where |A|
is the cardinality of the read/write set. Note that |A| is usually a constant factor,
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and greatly smaller than T . Also, as we will see, controller can further optimize the

versioning process by memoizing the versions within execution templates.

5.3.3 Garbage Collection

Nimbus provides automatic garbage collection at the run time. As a part of generating

the execution plan, controller recycles data objects with obsolete versions by letting

the tasks with write access to overwrite them with newer versions. A data version is

obsolete if there are no other tasks currently in the task graph or potentially spawned

in future by other tasks that might need to read a data object with the same version.

Note that tasks are spawned dynamically in Nimbus, and child tasks could refer-

ence any of the data version in the version context of the parent task. Nimbus does

not impose any context restriction for the sake of driver program simplicity. As a

result, controller has to hold on to at least one copy of every single data version in

the version context of every potential parent task in the task graph. Note that not

all tasks spawn other tasks in the driver program. For example, usually only the last

tasks in the task graph spawns the tasks in the later iterations. Nimbus leverages

this fact by requiring the driver program to explicitly mark the parent tasks.

All the tasks are sterile by default unless marked explicitly as parent in the driver

program. If a sterile task attempts to spawn other tasks, Nimbus raises a runtime

error. This way, controller needs to only hold on to the data versions in the context

of parent task, and efficiently allow data mutation for sterile tasks. This approach

effectively resemble memory footprint of a program in managed languages. Without

the notion of parent tasks, the garbage collection is not feasible in applications with

data mutations, as it means replicating the data object before each write access.

5.4 Control Plane

Controller plane in Nimbus includes the interactions between controller and work-

ers. Tasks graph is generated dynamically during runtime. The spawned tasks at

the workers are collected and submitted to the controller for processing. Controller
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transforms the task graph into an execution plan by inserting copy tasks in the tasks

graph, partitions and schedules tasks among workers, and recovers the execution from

worker failures.

5.4.1 Commands

The Nimbus control plane has four major commands. Data commands create and

destroy data objects on workers. Copy commands copy data from one data object to

another (either locally or over a network). File commands load and save data objects

from durable storage. Finally, task commands are either for spawning tasks from

workers to controller or for submitting tasks from controller to workers for execution.

Commands have five fields: a unique identifier, a read set of data objects to read,

a write set of data objects to write, a before set of the commands that must complete

before this one can execute, and a binary blob of parameters. Task commands include

a sixth field, which application function to execute. Controller updates the before set

of spawned tasks, such that it includes only other tasks on the same worker. If there

is a dependency on a remote worker, this is encoded through a copy command.

Copy commands, similar to tasks, have a before set. Copy tasks execute asyn-

chronously and follow a push model. A sender starts transmitting an object as soon

as the command’s before set is satisfied. Because this uses asynchronous I/O it does

not block a worker thread. Similarly, a worker asynchronously reads data into buffers

as soon as it arrives. Once the before set of a receive copy task is satisfied (the new

object is safely visible to the worker), it changes a pointer in the data object to point

to the new buffer.

5.4.2 Load Balancing

Production data analytics over big data require a large amount of memory and node

hours. Elastic cloud services such as Amazon EC2 [3], Google Cloud [13], and Mi-

crosoft Azure [17] have a pay for resources as needed model, making it possible to

run large scale applications in the cloud. However, one is left to deal with straggler

nodes, arising from oversubscribed and shared resources such as compute nodes and
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network, and failures such as I/O failures. Even private clusters exhibit these prob-

lems, when using a large number of nodes for long periods of time. Disruptions due

to failures and slow-down due to straggler nodes can be very expensive in terms of

time and effort. Nimbus automatically load-balances applications, and provides fault

tolerance.

Nimbus worker nodes periodically send total time spent in computation tasks

to the controller. A high compute time to total time ratio indicates that a node

may be a straggler – the node takes more time to complete compute tasks, while

other nodes are blocked on it on synchronization points. Such imbalance can come

from oversubscription of shared resources or interference from other applications,

difference in CPU speeds, or even from within the application, for instance, skew

in the data size [29]. A low compute time to total time ratio triggers migration –

Nimbus moves some partitions from the straggling worker to neighboring workers.

The controller sends commands to migrate tasks and data to worker nodes, and

worker nodes exchange data accordingly. This is repeated till the ratio of compute

time to total time falls within the threshold. If a node is particularly slow, then all

the tasks from that node may be moved to neighboring nodes.

5.4.3 Fault Recovery

Nimbus implements a checkpoint recovery mechanism. Although a controller keeps

the full lineage for every data object in the system, for iterative computations we

found that linage-based recovery [128] is essentially identical to checkpointing because

there are frequent synchronization points around shared global values. Any lineage

recovery beyond a synchronization point requires regeneration of every data object,

which is a snapshot.

Nimbus automatically inserts checkpoints into the task stream from a driver pro-

gram. It chooses the checkpoint interval based on an estimation of the node failure

rate and the time to write to stable storage. When a checkpoint triggers, the con-

troller waits until all worker task queues drain, stores a snapshot of the current task

graph, and requests every worker to write its live data objects to durable storage.
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When a controller determines a worker has failed (it stops sending periodic heart-

beat messages and/or workers depending on its data fall idle), it sends a halt com-

mand to every worker. On receiving the command, workers terminate all ongoing

tasks, flush their queues, and respond that they are ready to restart. The controller

sends commands to load the latest snapshot into memory, reverts to the stored task

graph, and restarts execution.

Current implementation of Nimbus does not survive controller failures. However,

one can imagine a replicated mechanism for snapshots, for example through a Paxos

ring [81]. Upon controller failures, workers could connect to a backup controller and

resume execution from the latest snapshot.

5.5 Execution Templates in Nimbus

This section covers the details on how execution templates and their mechanisms are

implemented in Nimbus. Execution templates optimize the functionalities of control

plane between controller and workers. Since in Nimbus control flow workers generate

and spawn the tasks and then controller schedules them for execution on the workers,

there are two types of execution templates. One for the driver-controller interface

called a controller template, and one for the controller-worker interface called a worker

template. Controller templates caches the entire task graph, while worker template

caches the per worker execution plans.

5.5.1 Controller and Worker Templates

Controller templates contain the complete list of tasks in the task graph of a basic

block. They cache the results of creating tasks, dependency analysis, data lineage,

bookkeeping for fault recovery, and assigning data partitions as task arguments in

the task graph. For every unique basic block, a driver program installs a controller

template at the controller. The driver can then execute the same basic block again

by telling the controller to instantiate the template. As depicted in Figure 5.6(a),

controller templates allow driver program to instantiate the entire tasks graph on the
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Figure 5.6: Controller and worker template in Nimbus. Controller template enables
driver program to spawn an entire task graph on the controller with a single message.
Worker templates let controller instantiate the execution plan on the workers with a
single message.

controller with a single instantiation message, instead of sending individual tasks and

their metadata, one-by-one from scratch.

Where controller templates describes a basic block over the whole task graph,

each worker template describes the portion of the execution plan that runs on a

particular worker for each basic block. Workers cache the dependency information

needed for a worker to execute the tasks and schedule them in the right order. Like

TensorFlow [22], external dependencies such as data exchanges, reductions, or shuffles

appear as tasks that complete when all data is transferred. Worker templates include

metadata identifying where needed data objects in the system reside, so workers

can directly exchange data and execute blocks of tasks without expensive controller

lookups. As depicted in Figure 5.6(b), worker templates allow controller to instantiate

an execution plan on the workers with a single message.

When a driver program instantiates a controller template, the controller makes a

copy of the template and fills in all of the passed parameters. It then checks whether

the prior assignment of tasks to workers matches existing worker templates. If so,

it instantiates those templates on workers, passing the needed parameters. If the
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Figure 5.7: Controller template content for the task graph depicted in Figure 5.4.
A controller template represents the common structure of a task graph metadata. It
stores task dependencies and data access patterns. It is invoked by filling in task
identifiers and parameters to each task.

assignment has changed, it either edits worker templates or installs new ones. In the

steady state, when two iterations of a basic block run on the same set of n workers,

the control plane sends n + 1 messages: one from the driver to the controller and 1

from the controller to each of the n workers. This is shown in Figure 5.6.

5.5.2 Installation and Instantiation

Driver programs explicitly install controller templates. This is necessary because only

a driver program has the complete program structure so it knows where basic blocks

begin and end. Template installation begins with the driver sending a start template

message to the controller at the beginning of a basic block. In current implementation

of Nimbus, programmer explicitly marks the basic block in the driver program; one

can imagine other automatic approaches such as static program analysis. As the

controller receives tasks, it simultaneously schedules them normally and stores them

in a temporary task graph data structure. At the end of the basic block, the driver

sends a template finish message. On receiving a finish message, the controller takes
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Figure 5.8: Worker template content for the execution plan depicted in Figure 5.5.
A worker template represents the common structure of a task graph metadata. It
stores task dependencies and data access patterns. It is invoked by filling in task
identifiers and parameters to each task.

the task graph and post-processes it into an optimized, table-based data structure.

Pointers are turned into indexes for fast lookups into arrays of values.

Controller templates cache the read set, write set, and function identifier along

with before set metadata as indices into an array as depicted in Figure 5.7. A tem-

plate instantiation message includes an array of task identifiers and a block of task

parameters. Within a template, task identifiers index into this array. The one time

cost of generating the ordered indices keeps the successive instantiations efficient.

Figure 5.7 shows the instantiation of a controller template with a new set of task

identifiers and parameters.

Once it has generated the controller template, the controller generates the asso-

ciated worker templates. Worker templates cache the per worker execution plan on

each worker, and their content depends on how tasks are partitioned among workers.

It caches the tasks (including copy tasks), each data object that they access, and the

dependency list, as depicted in Figure 5.8.

Worker template has a preconditions list of which data objects at each worker
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must hold the latest version to that object. An important detail is that not all

data objects are required to be up to date: a data object might be used for writing

intermediate data and be updated within the worker template itself. For example,

in Figure 5.8, the third data object on worker 1 does not need to have the latest

update at the beginning of the worker template; the data copy within the worker

template updates it. Controller keeps a copy of the worker template preconditions

centrally. Before instantiation, controller validates whether data object states match

the preconditions, and generates and applies patches, if needed.

The controller installs worker templates very similarly to how the driver installs

controller templates. And like controller templates, instantiation passes an array of

task identifiers and parameters. Figure 5.8 shows a set of worker templates and how

they are instantiated for the execution plan in Figure 5.5.

5.5.3 Patching

Validation and patching allow templates to efficiently handle dynamic program control

flow. Before instantiating a worker template, controller must validate whether the

template’s preconditions hold and patch the worker’s state if not. For example,

suppose that the driver invokes the controller template in Figure 5.7 twice, back-to-

back as depicted in Figure 5.9. Both worker templates have a precondition that their

copy of object 1 contains the latest update. This is true for worker 1, since it wrote

to object 1, but it is not true for worker 2. The controller therefore needs to issue

patches: a data copy from worker 1 to worker 2.

Validating and patching must be fast, because they are sequential control plane

overhead that cannot be parallelized. Making them fast is challenging, however, when

there are many workers, data objects, and tasks, because they require checking a great

deal of state. Nimbus uses two optimizations to keep validation and patching fast.

Validation and Patching Optimizations

The first optimization relates to template generation. When generating a worker

template, Nimbus ensures that the precondition of the template holds when it finishes.
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Figure 5.9: An example patching scenario in Nimbus. After first instantiation of the
worker templates, the first data object is outdated on the right worker. Controller
patches the right worker’s state to match the preconditions of the worker template,
before instantiating a second worker template.

By doing so, it ensures that tight inner loops, which dominate execution time and

control plane traffic, automatically validate and need no patching. As an example, in

Figure 5.8, this adds a data copy of object 1 to worker 2 at the end of the template.

Second, workers cache patches and the controller can invoke these patches much

like a template. When a worker template fails validation, the controller checks a

lookup table of prior patches indexed by what executed before that template. If the

cached patch will correctly patch the template, it sends a single command to the

worker to instantiate the patch. Otherwise, it calculates a new patch and sends all of

the resulting commands. We have found that the patch cache has a very high hit rate

in practice because control flow, while dynamic, is typically quite narrow (analytics

applications do not have switch statements or many nested conditionals).
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Figure 5.10: Edits to migrate a task. The controller removes the task from worker
1’s template and adds two data copy commands (S1, R2). It adds the task and two
data copy commands (R1, S2) to worker 2’s template.

5.5.4 Edits

Controllers need to make small changes to how a program is distributed across work-

ers, either in response to stragglers, changes in the available nodes, or load imbalance.

Templates can contain thousands of tasks and so installing one can be a significant

control plane cost, comparable to the cost of not using a template at all for that

iteration. Instead of installing new templates for every change, controller edits the

content of templates to match the scheduling changes.

Whenever a controller instantiates a worker template, it can attach a list of edits

for that template to apply before instantiation. Each edit specifies either a new task

to include or a task to remove. Content changes due to edits are usually limited to the

actual tasks being added or removed, because in cases when there are dependencies

with other tasks, tasks are exchanged with data copy commands. Figure 5.10 shows,

for example, how a task’s entry in a before set is replaced by a data receive command.

As long as the data receive command is assigned the same index within the command

identifier array, other commands do not need to change. Using edits, minor changes

in scheduling have very small costs and the cost scales with the size of the change.
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1 class Sample : public Data {
2 public:
3 void Create () {
4 // allocate memory and load data.
5 LoadDataFromDisk(data_id_);
6 }
7 void Destroy () { // free the allocated in-memory state.}
8 string Serialize () {// serialization logic.}
9 Data* Deserialize(string bytes) {// deserialization logic.}

10 };

Listing 5.1: Defining the Sample data type for logistic regression algorithm.

5.6 Application API

This section presents Nimbus API and describes how applications are written in

Nimbus with an example. Specifically, it shows how the pseudo code of the logis-

tic regression algorithm depicted in Figure 3.2 is implemented in Nimbus. The core

library implements common functionalities, and there are simple interfaces to imple-

ments application specific details. There are two main classes in Nimbus: Data class,

and Task class. Every data type inherits from the Data class and implements a few

basic methods for memory allocation and serialization. The tasks inherit from the

Task class which implements basic methods for control flow and data access function-

alities, and developers override the execution methods to implements the application

logics. Nimbus library also provides high-level helper methods for task spawning and

explicitly marking the boundaries of templates.

5.6.1 Data Interface

Nimbus does not constrain the structure of the data types. However, every data type

should implement four main methods: Create, Destroy, Serialize and Deserialize.

The first two methods cover memory allocation and deallocation for the data objects.

The second two allow Nimbus to exchange data object over the network or save/load

the data objects on/from the persistent disk for checkpointing and recovery purposes.

For example, Listing 5.1 shows how the input data samples of logistic regression are
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1 class Main : public Task {
2 public:
3 void Execute () {
4 int iteration_num = 10;
5 int partition_num = 100;
6 CreateData("samples", Sample , partition_num);
7 CreateData("coeff", Coefficient , partition_num);
8 SpawnTask("loop", string(iteration_num));
9 }

10 };

Listing 5.2: The main task implementation for logistic regression.

ported into Nimbus. Each data object upon instantiation has a unique identifier. In

line 5, for example, the data identifier is used to load a partition of the data samples

off the disk into main memory for later computations.

5.6.2 Task Interface

Application specific tasks override the Execution method of the base class. This is

the method that gets called once the task is executed. Each task can access its binary

string of parameters and the list of data objects in its access list, perform arbitrary

computation, create new data objects, and spawn other tasks. The application life-

time starts by executing a special task named Main. Other tasks are spawned from

there.

For example, Listing 5.2 shows how the Main task for logistic regression example is

implemented. In line 6 and 7, the data objects are defined and partitioned. In addition

to the input data sample type defined in Listing 5.1, there is also the Coefficient type

to hold feature coefficients. Here, for example, the input data samples are partitioned

in to 100 objects, and there are same number of coefficient object, one for each local

gradient operations on the samples partition. After defining the data objects, the

Main task spawns the Loop task which will in turn spawn the tasks iteratively for

the gradient and reduction operations. The loop task does not read/write any data

objects, however, it has an iteration number parameter that specifies the loop counter.
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1 class Loop : public Task {
2 public:
3 Execute () {
4 int partition_num = 100;
5 StartTemplate ();
6 {
7 StartStage ();
8 for (int i = 0; i < partition_num; ++i) {
9 set <uint64_t > read , write , before;

10 LoadAccessSet("samples", &read , i);
11 LoadAccessSet("coeff", &read , i);
12 LoadAccessSet("coeff", &write , i);
13 LoadBeforeSet (& before);
14 SpawnTask("gradient", read , write , before);
15 }
16 EndStage ();
17 }
18 {
19 StartStage ();
20 set <uint64_t > read , write , before;
21 for (int i = 0; i < partition_num; ++i) {
22 LoadAccessSet("coeff", &read , i);
23 LoadAccessSet("coeff", &write , i);
24 }
25 LoadBeforeSet (& before);
26 SpawnTask("reduce", read , write , before);
27 EndStage ();
28 }
29 EndTemplate ();
30
31 int iteration_num = int(GetParameter ());
32 if (iteration_num > 0) {
33 SpawnTask("loop", string(iteration_num - 1));
34 } else {
35 TerminateApplication ();
36 }
37 };

Listing 5.3: The loop task implementation for logistic regression.
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5.6.3 Stage Operations

Filling in the identifiers in the read/write set of the tasks for spawning could be te-

dious. For example, each iteration of the logistic regression in Figure 3.2 requires

many parallel tasks for gradient operation followed by a global reduction. Each gra-

dient task reads a partition of the samples and coefficients, and writes the coefficients

partially. The reduce task reads in all partially updated coefficients and reduces them.

Listing 5.3 shows how these tasks are spawned along with their metadata within the

loop task. Nimbus library provides helper task methods for loading the read/write

set as shown in lines 10 to 12.

Also, instead of handling before set entries manually to shape the task graph,

programmers could only mark the beginning and end of each parallel stage. For

example, all the gradient tasks are spawned between the StartStage and EndStage

directives in lines 7 and 16. Based on the parallel boundaries, the built in method

fill in the before set entries, as in lines 13 and 25. Any read after write dependency

beyond a single stage results in a before set relation. For example, the reduce tasks

has all the gradient tasks in it before set, since it reads the coefficients written by

the gradient tasks. The tasks within a stage boundary do not have any before set

relation with each other and hence can run in parallel.

5.6.4 Template Boundaries

Current implementation of Nimbus requires the application developers to explicitly

mark the beginning and end of each basic block to mark the part of the program

with no branches. For example, Listing 5.3 shows how the code block between lines 5

and 29 is marked as a template. The gradient and reduce tasks spawning is captured

within the template, while the conditional branch afterward is excluded. After the

template basic block, depending on the loop counter, another instance of the loop

tasks is spawned or application is terminated (line 35).
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1 class Gradient : public Task {
2 public:
3 Execute () {
4 Sample& samples = GetData("samples");
5 Coefficients& coeff = GetData("coeff");
6 Coefficient gradient (0);
7 for (int i = 0; i < samples.size(); ++i) {
8 gradient += DotProduct(samples[i], coeff);
9 }

10 coeff = gradient;
11 }
12 };

Listing 5.4: The gradient task implementation for logistic regression.

5.6.5 Computation on Data

Finally, Listing 5.4 is an example of how tasks access and compute on the data objects

in their access list. Here, the gradient task reads the samples in its data partition

and updates it coefficient data object. The reduce task would similarly read in all

the coefficient object and reduce them.
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Evaluation

This chapter evaluates execution templates in Nimbus, comparing them with state-

of-the-art frameworks with distributed and centralized control planes. It considers

micro benchmarks to evaluate the limits of execution templates in extreme cases. End-

to-end performance evaluations of common machine learning and graph processing

applications show execution templates in practice for traditional data analytics. In

addition, it shows the behavior of execution template in dynamic scheduling and

resource allocation scenarios. In summary, we find:

• Execution templates allow centrally scheduling high task throughput appli-

cations at hundreds of thousands of tasks per second, imposing a control plane

overhead competitive with distributed control planes. For example, in an ap-

plication with a single-stage task graph (worst case for templates in terms of

cached block size), Nimbus can schedule more than 500,000 tasks per second

over a cluster of 100 workers.

• Execution templates enable dynamic scheduling at task granularity, provid-

ing runtime flexibility and adaptivity equivalent to frameworks with a central-

ized controller. A single task migration imposes an overhead of 41µs, and the

scheduling cost grows linearly with the number of changes.

• Execution templates allow low-cost, dynamic resource allocation in the clus-

ter. Template metadata size is negligible compared to the in-memory data of

80
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the applications, such that worker nodes can install many different versions of

the templates, and controller validates, patches, and instantiates them quickly

according to even drastic resource changes in the cluster.

The next chapter describes porting graphical simulations in Nimbus to evaluate exe-

cution templates in practice for applications with complex dynamic control flow.

The nested loops and data dependent branches in graphical simulations trigger subtle

validation and patching cases. Execution templates allow Nimbus to scale to the task

throughput requirements of graphical simulations while imposing negligible patching

cost, showing comparable performance to application-level MPI [113] implementation,

where control flow is statically compiled.

6.1 Methodology

All experiments use Amazon EC2 compute-optimized instances since they are the

cheapest option for compute-bound workloads. Worker nodes use c3.2xlarge in-

stances with 8 virtual cores and 15GB of RAM. Controllers run on a more powerful

c3.4xlarge instance, with twice as many resources, to show how jobs bottleneck on

the controller even when it has more resources. All nodes are allocated in a single

placement group and have full bisection bandwidth at 1Gbps. We have measured

the round trip time (RTT) to be ≈700µs in average among instances. In the experi-

ments, we measure iteration time and control plane overhead on clusters with up to

100 worker nodes.

We compare the performance of Nimbus with Spark 2.0 and Naiad 0.4.2. Spark [128]

is the state-of-the-art and widely used framework [10] with a centralized control plane

model. It is an accepted fact that Spark is superior to MapReduce [48] and Hadoop [6]

in terms of performance for in-memory computations [128]. The latest distribution,

Spark 2.0, implements tungsten code generation engine for CPU performance opti-

mizations [1, 121]. We use MLlib [9] and GraphX [61] libraries from Spark 2.0 to

implement machine learning and graph processing benchmarks.

We consider Naiad [94] as a representative for frameworks with distributed control

plane model. TensorFlow’s control plane design [22] is very similar to Naiad’s, which
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results in close performance and behavior. Note that TensorFlow uses a centralized

Master for data flow instantiations, which leads to slightly lower performance num-

bers compared to completely decentralized data flow model in Naiad. We measured

TensorFlow’s task throughput at about ≈200,000 tasks per second for a cluster of 100

workers, while Naiad reports task throughputs as high as ≈680,000 tasks per second

for a cluster of 64 workers [94]. We do not believe that these performance differ-

ences are fundamental flaws in the design of TensorFlow, but rather implementation

artifacts. To be safe, we consider Naiad as the bottomline performance target.

Because our goal is to measure the task throughput and scheduling granularity

of the control plane, we factor out language differences among frameworks and have

them run tasks of equal duration. Nimbus tasks are implemented in C++ and run 8

times faster than Spark’s MLlib due to Spark using a JVM (a 4x slowdown) and its

immutable data requiring copies (a 2x slowdown). Nimbus tasks run 3 times faster

than Naiad due to Naiad’s use of the CLR for C# implementations. We set the

task duration as the fastest of the three frameworks, as it evaluates the highest task

throughput. This is done by replacing the task computations with a spin-wait as long

as C++ tasks in Naiad and Spark. To show that tasks in Naiad and Spark are not

C# or Scala codes but rather tasks that run as fast as C++ ones, we label them

Naiad-opt and Spark-opt. This evaluates the performance of these frameworks if their

tasks called directly into native code with no overhead.

The Naiad and Nimbus implementations of global reductions include application-

level, two-level reduction trees. Workers locally reduce their results before passing a

single partial reduction to the global reducer. Application-level reductions in Spark

harm completion time because they add more tasks that exacerbate the bottleneck

at the centralized controller.

6.2 Micro-Benchmarks

This section presents micro-benchmark performance results. These results are from a

logistic regression job with a single controller template with 8,000 tasks, split evenly

into 100 worker templates, each with 80 tasks. Each worker has 8 cores, and so there
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Per-task cost

Installing controller template 25µs
Generating worker template 15µs
Installing worker template on worker 9µs

Nimbus task scheduling 134µs
Spark task scheduling 166µs

Table 6.1: Template installation is fast compared to scheduling. The 49µs per-task
cost is evenly split between the controller and worker templates. Controller template
has a one time cost for each basic block in the driver program. Installing a new
worker template for each scheduling and tasks partitioning strategy has a per-task
cost of 24µs, including generating preconditions at the controller. This is only an
18% overhead on centrally scheduling that task.

are 10 tasks per each core in the cluster. This is a conservative task granularity for

straggler mitigation purposes [46, 97]. Higher task per core ratios would show better

speedups from the templates, as costs are amortized over larger cached blocks per

worker. Also, note that logistic regression has a single-stage basic block, as depicted

in Figure 3.2. This is the worst case scenario for templates: basic blocks with multiple

stages spawn greater number of tasks with a single instantiation message.

6.2.1 Installation Cost

Table 6.1 shows the costs of template installation. We report the per-task costs

because they scale with the number of tasks (there are individual task messages).

We also report the cost of centrally scheduling a task in Spark and Nimbus to give

context. Installing a template has a one-time cost of installing the controller template

and the potentially repeated cost of installing worker templates. Adding a task to a

controller template takes 25µs. Adding it to a worker template takes 24µs, including

the overhead of generating the worker template preconditions at the controller. In

comparison to scheduling a task (134µs), this cost is small. Installing all templates

has an overhead of 36% on centrally scheduling tasks.

Figure 6.1 shows the entire process of installing and instantiating templates in a

scenario. The run starts with templates disabled. The control plane overhead of a
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Figure 6.1: Execution templates are installed at runtime. After detecting a basic
block, controller installs a controller template, generates worker templates, and then
installs the worker templates on the workers. Once installed, templates are instan-
tiated for consequent iterations of the basic block and help reduce the control plane
overhead. Here a logistic regression job over 100GB of data executes on 100 workers.

centralized scheduler (134µs per tasks) dominates iteration time: each iteration takes

1.07s. Templates are manually disabled at the beginning to show the performance

without templates as a reference point. At iteration 10, the driver starts using tem-

plates. Iteration 10 takes ≈ 1.3s, as installing each of the 8,000 tasks in the controller

template adds 25µs. On iteration 11, the controller template has been installed, and

the controller generates worker templates and their preconditions as it continues to

send individual tasks to workers. This iteration is faster because the control traffic

between the driver and controller is a single instantiation message. On iteration 12,

controller sends tasks to and installs templates on the workers. On iteration 13 and

afterwards, templates are instantiated with negligible control plane overhead.

6.2.2 Instantiation and Validation Cost

After templates are installed, executing a basic block has the cost of instantiating

controller templates and their associated worker templates. Table 6.2 shows the costs

of template instantiation for each template type. There are two cases for the worker

template. In the first (common) case, the template validates automatically because

it is instantiated after the same template. Since Nimbus ensures that a template, on

completion, meets its preconditions, in this case the controller can skip validation.

In the second case, a different worker template is instantiated after the previous one,
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Per-task cost

Instantiate controller template 0.2µs
Instantiate worker template

w/ auto-validation 1.7µs
w/ explicit-validation 7.3µs

Table 6.2: Template instantiation is fast. For the common case of a template au-
tomatically validating (repeated execution of a loop), instantiation takes 1.9µs/task:
Nimbus can schedule over 500,0000 tasks/sec. If dynamic control flow requires a full
validation, it takes 7.5µs/task and Nimbus can schedule 130,000 tasks/second.

and controller must fully validate the template. When executing the inner loop of a

computation, Nimbus can skip validation.

Instantiating a controller template is extremely cheap, 200ns per task. All this

involves is copying the controller template structure and filling in the task identifiers

and parameters. Instantiating a worker template that automatically validates takes

1.7µs per task, while with explicit validation it takes 7.3µs per task. When executing

the inner loop of a computation, Nimbus’s scheduling throughput is over 500,000

tasks per second (1 / (0.2µs + 1.7µs)), and when explicit validation is needed Nimbus

schedules up to 130,000 tasks per second (1 / (0.2µs + 7.3µs)).

6.3 Data Analytics Benchmarks

This section evaluates the strong scalability of execution templates and it’s impact on

job completion time. Specifically, it evaluates the end-to-end application performance

of data analytics applications, including two machine learning benchmarks, logistic

regression and k-means, as representatives of supervise and unsupervised learning

algorithms, and a graph processing benchmark, PageRank [100].

6.3.1 Machine Learning

Figure 6.2 shows the results of running logistic regression and k-means clustering

jobs over a data set of size 100GB in Spark, Naiad, and Nimbus. As discussed in
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Figure 6.2: Iteration time of logistic regression and k-means jobs for a data set of
size 100GB. Nimbus executes tasks implemented in C++. Spark-opt and Naiad-opt
show the performance when the computations are replaced with spin-wait as fast as
tasks in C++. Execution templates help centralized controller of Nimbus scale out
almost linearly and deliver performance similar to Naiad’s distributed control plane,
while Spark’s controller bottlenecks at scale.

Section 6.1, to create a level ground for all frameworks, we consider Spark-opt and

Naiad-opt that run tasks as fast as C++ tasks in Nimbus (the back bars). The

reported numbers are averaged over 30 iterations; we observed negligible variance

in iteration times. The initial iterations are excluded from average to remove the

overhead of data loading, JIT compilation in Spark/Naiad, data flow installation in

Naiad and template installation in Nimbus. This gives a clear understanding of the

steady-state performance without amortizing these one-time overheads over arbitrary

number of iterations.
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Figure 6.3: Iteration time of logistic regression over 100GB of data in Spark-opt, and
Nimbus in three scenarios: 1) without any template, 2) with only controller templates,
and 3) with both controller and worker templates. Templates help Nimbus scale;
without them Nimbus shows performance similar to Spark, as control plane becomes
a bottleneck. Performance benefits of templates are almost split equally between
controller templates and worker templates.

Nimbus and Naiad have equivalent performance; with 20 workers, an iteration

of logistic regression takes 210-220ms and with 100 workers it takes 60-80ms. The

slightly longer time for Naiad with 100 workers (80ms) is due to the Naiad runtime

issuing many callbacks for the small data partitions; this is a minor performance

issue and can be ignored. For k-means clustering, an iteration across 20 nodes takes

310-320ms and an iteration across 100 nodes takes 100-110ms. Completion time

shrinks more slowly than the rate of increased parallelism because reductions do not

parallelize.

Running over 20 workers, Spark’s completion time is 70-100% longer than Nimbus

and Naiad. With greater parallelism (more workers), the performance difference

increases: Naiad and Nimbus run proportionally faster and Spark runs more slowly.

Over 100 workers, Spark’s completion time is 15-23 times longer than Nimbus. The

difference is entirely due to the control plane. Spark workers spend most of the time

idle, waiting for the Spark controller to send them tasks. In contrast, although Nimbus

has a centralized controller as well, execution templates generate and schedule tasks

locally similar to Naiad, and so Nimbus does not bottleneck at the controller.
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Figure 6.4: Task throughput of Nimbus and Spark as the number of workers increases.
Spark saturates at about 6,000 tasks per second, while Nimbus grows at a superlinear
rate: more parallelism demands more tasks and simultaneously the tasks become
shorter. Note that the y-axis scale is different in the plots.

Figure 6.3 shows how execution templates help remove the control plane bottleneck

for Nimbus’s centralized controller. It considers three different cases for running under

Nimbus: 1) no templates, 2) only controller template activated, 3) both controller and

worker templates are activated. As you can see, without templates Nimbus performs

similarly to Spark. The benefits from templates are almost equally split between

controller and worker templates.

6.3.2 Control Plane Throughput

Figure 6.4 shows the rate at which Nimbus and Spark schedule logistic regression

tasks as the number of workers increases. Spark quickly bottlenecks at ≈6,000 tasks

per second. This measurement aligns with previously reported numbers [99]. For

all measurements we have disabled all internal loggings in Spark: if enabled, the

throughput drops to around 1,500 tasks per seconds. Also, the task throughput is

directly affected by the size of the Java bytecode generated for the tasks. Writing

a driver program with many local variables or large closure size, in case of a Scala

program, could increase the bytecode size remarkably. In all experiments, we either

used Spark library for application implementations or meticulously wrote the driver

programs to avoid large bytecodes. In all case the task bytecode size and accompanied
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RDD metadata did not exceed few Kilobytes.

Nimbus, however, scales to support the increasing task throughput: a single iter-

ation over 100 workers takes 60ms and executes 8,000 tasks, which is 128,000 tasks

per second. It is only about 25% of Nimbus’s throughput limits (500,000 tasks per

second). Note that the y-scale in Figure 6.4 is different for Nimbus and Spark. In

this strong-scaling setup, the ideal task rate grows quadratically, O(N2), where N

is the number of workers. To see why that is the case, note that the tasks rate is

the number of tasks in one iteration divided by the iteration time. The number of

tasks increases linearly with the number of workers, O(N), and the iteration time

drops inversely, O(1/N), since problem size remain the same and individual tasks get

smaller. These both affect simultaneously, and lead to a quadratic growth in the tasks

rate. In case of Nimbus, the tasks rate increase superlinearly, but it is not perfectly

quadratic. This is due to global reduction that cannot be parallelized.

6.3.3 Graph Processing

We consider PageRank [100], as a common graph processing benchmark. This exper-

iment examines what happens when increasing task granularity leads to the network,

rather than control plane, becoming the bottleneck. This is a common phenomenon

in HPC workloads as they typically do not have a central controller and carefully

balance computation with communication [32]. The iterative PageRank implementa-

tion has two stages per iteration: a scatter step that updates links (edges) with rank

contributions from articles (nodes), and a gather step that collects contributions for

every article.

We run PageRank over a graph of English Wikipedia articles and links, similar to

the experiment described in Spark paper [128]. The Wikipedia dump [21] contains 12

million articles and 372 million links. We used Metis [16] to partition the graph into

400 (800) edge-cut partitions over 5 (10) workers, using k-way partitioning. Spark’s

PageRank implementation uses vertex-cut partitioning. PowerGraph [60] shows that

vertex-cut partitions perform better on natural graphs with power-law degree distri-

butions. We leave vertex-cut partitioning and other graph optimizations in Nimbus
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Figure 6.5: One iteration of PageRank in GraphX and Nimbus over a graph of English
Wikipedia articles and links. The application with optimized tasks is communication-
bound, and not control plane bound. Increasing the number of workers under Nimbus
hurts the performance due to the increase in data exchange size. GraphX tasks
are implemented in Scala (not optimized) and the application is still CPU-bound.
Increasing the number of workers helps execute the CPU-bond tasks in GraphX faster
but it sees similar increase in communication time.

for future work.

Figure 6.5 compares the results of running PageRank over 5 and 10 workers using

Nimbus and GraphX [61] library from Spark. Individual tasks in Nimbus run 37

times faster than GraphX implementation in Scala (the black bars). This gives an

immediate advantage to Nimbus. Note that we could not use the spin-wait trick here

to equalize the computation times: actual task executions are required to generate

the input for the gather stage. Without explicit computations GraphX would not

generate required communication patterns between scatter and gather nodes.

Here, increasing the number of workers from 5 to 10, increases the communica-

tion overhead between scatter and gather stages. Increasing the number of partitions

means that there are more nodes/edges that end up along the partition boundaries,

and hence needed to be exchanged. The similar effect is seen in both GraphX and

Nimbus, although communication overhead in Nimbus is slightly worst due to its

edge-cut partitioning. For example, with 400 edge-cut partitions, each partition com-

municates with almost all other partitions, even with k-way partitioning, resulting
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Cost

Nimbus single edit ≈ 41µs
Nimbus 5% task migration (800 edits) 35ms
Nimbus complete installation (8000 tasks) 203ms

Naiad any change 230ms

Table 6.3: A single edit to the logistic regression job takes 41µs Nimbus, and the
cost scales linearly with the number of edits. Edits are still less expensive than full
installation when migrating as high as 5% of the template’s tasks. Any change in
Naiad induces the full cost of data flow installation

in over 120,000 messages. As a result, the overall performance hurts under Nimbus,

when increasing the number of workers. Faster iteration time in GraphX on 10 work-

ers is only because the application is still in the CPU-bound range and more workers

help run the bulky tasks faster.

In both frameworks the control plane overhead is negligible since the jobs become

either network-bound in Nimbus, or is still CPU-bound in GraphX. Workers are

mainly computing and exchanging data and do not fall idle waiting on the controller.

Even though this application is not control bound, templates still help schedule opti-

mized tasks in Nimbus faster. We measured that disabling execution templates slows

Nimbus by 28%. Overall, Nimbus with execution templates runs PageRank over 5

times faster than the GraphX implementation.

6.4 Dynamic Scheduling

This section evaluates how well execution templates can support fine-grained schedul-

ing, and keep the cost proportional to the size of changes. Table 6.3 shows per-edit

costs for the logistic regression job. A single edit (removing or adding a task) takes

41µs. 800 edits (e.g., migrating 5% of the tasks) takes 35ms, fraction of complete

installation cost. Edits allow execution templates to provide fine-grained scheduling

without installing new templates for every minor change. For example, we measured
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Figure 6.6: Logistic regression over 100 workers with task migration every 5 iterations.
Nimbus shows negligible overhead by using edit mechanisms in templates, while Naiad
requires complete data flow installation for migrations. Naiad curve is simulated from
benchmark numbers, as current implementation does not allow any changes in the
dataflow once the simulation starts.

the cost of installing physical graphs on Naiad is about 230ms, which would be in-

duced for any changes.

Despite distributed frameworks that induce complete cost of dataflow installa-

tion for every minor change, execution templates show similar behavior as centralized

frameworks. For example, Figure 6.6 shows the scenario of running a logistic re-

gression job over 100 workers and migrating 5% of tasks every 5 iterations. Nimbus

migration overhead is negligible, while Naiad requires complete dataflow installation

for any change in scheduling. Note that, current Naiad implementation does not sup-

port any dataflow flexibility once the job starts, so the curve here is simulated from

the numbers in Table 6.3 and Figure 6.2(a). The incremental edit cost allows Nimbus

to finish 20 iterations almost twice as fast as Naiad.

Edits allow controllers to inexpensively make small-scale changes to worker tem-

plates. Figure 6.7 shows how the cost of edits compares to the cost of reinstalling

templates. The cost of edits increases linearly with the number of edits involved.

However, because the cost of an individual edit (41µs) is greater than the cost of

installing a task in a worker template (29µs), when the change is large enough it is

faster to install a new template. Note that extra cost of edits is due to the necessary
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Figure 6.7: Edits support fine-grained scheduling because the cost of edits is small
and scale linearly with the number of edits. Installing a new template is more efficient
for large changes.

changes in the task graph and inserting extra copy tasks as depicted in Figure 5.10.

Furthermore, since edits operate in place, they do not allow quickly switching between

very different schedules, as discussed below in Section 6.5. Heuristics on when to edit

versus install new templates are an area of future work.

6.5 Dynamic Resource Allocation

Workers save multiple versions of a worker template, according to various task par-

titioning, and cluster resource allocations for a job. The worker template is saved

as a vector of indices for task and data identifiers in the execution plan and takes

≈1KB of metadata per core. This is orders of magnitude smaller than the in-memory

data object that cores access for task execution. So workers can cache many worker

templates with negligible overhead and controller can instantiate them according to

the cluster manager decisions.

Figure 6.8 shows a scenario in Nimbus where the cluster manager adjusts the

available resources. This scenario builds on the run in Figure 6.1: templates are

already installed and being instantiated over 100 workers in the cluster. At iteration

20, the cluster resource manager revokes 50 workers from the job’s allocation. On
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Figure 6.8: Execution templates can schedule jobs with high task throughputs while
dynamically adapting as resources change. This experiment shows control overheads
as a cluster resource manager allocates 100 nodes to a job, revokes 50 of the nodes,
then later returns them. Workers can install different versions of templates, and con-
troller can validate and instantiate them quickly, according to the available resources.

this iteration, the controller regenerates the worker templates and their preconditions,

migrating tasks from evicted workers to the remaining half of workers. On iteration

21, the controller installs newly generated worker templates for the 50 workers. Later

iterations instantiate the templates. Note that compared to the 100 worker cluster,

computation time doubles because each worker is performing twice the work. To

disambiguate the control plane and data migration overhead, the data sets on the

evicted workers (50GB) are already loaded on the other half of workers (evenly among

them).

At iteration 30, the cluster resource manager restores the 50 workers to the job’s

allocation. The controller reverts back to using the original worker templates and

so does not need to install new templates. However, on this first iteration, it needs

to validate the templates. As listed in Table 6.2,the instantiation cost with explicit

validation in the first iteration (7.5µs per task), is higher than auto validation cost

for later iterations (1.9µs per task). Accordingly, after slightly higher control plane

overhead at iteration 30, each iteration time drops back to 60ms for later iterations.



Chapter 7

Graphical Simulations in Nimbus

To evaluate if execution templates can handle full applications with complex control

flows and data flows, this chapter presents the details of running graphical simulations

in Nimbus. The chapter starts by presenting a geometric-based data model that

allows distributing the sequential kernels of simulation libraries automatically, by

writing a simple driver program in Nimbus. It continues by evaluating the effects of

running graphical simulations at scale on the control plane of Nimbus. It shows how

execution templates enable Nimbus to support the task throughput requirements of

these applications while adapting to their complex control flow with nested loops and

data dependent branches.

Graphical simulation is a cornerstone of modern animation and special effects.

These simulations are computationally intensive and so could greatly benefit from

elastic scalability of the cloud. On-demand cloud computing has made high-performance

computing clusters immediately available to anyone at very low cost. A c3.2xlarge

Amazon Elastic Compute Cloud (EC2) instance with 8 virtual cores, 15GB of RAM,

and 1Gbps full bisection bandwidth costs 40¢/hour [3]: running an 800-core simula-

tion for an hour costs $40.

Despite all of its benefits, however, cloud computing has been mostly untapped

by simulations. Simulations are hard to distribute. They use multiple geometric data

representations, coupled through an intricate series of computational steps. A particle

95
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Figure 7.1: Still of a particle level-set water simulation.

level-set water simulation, as shown in Figure 7.1 for example, consists of a triple-

nested loop with over a dozen different operations. It maintains an Eulerian MAC

grid for the volume, four different sets of particles in a thin band at the interface,

and a sparse matrix for solving the implicit terms of the Navier-Stokes equations [51].

Distributing this simulation requires rewriting each computational step to use low-

level networking interfaces (such as MPI) and distributed debugging.

This chapter presents how Nimbus distributes an existing sequential grid-based

or hybrid (e.g., particle level-set) simulation library across many multi-core nodes.

A driver program, written by the simulation author is a simple, sequential program.

Controller translates the driver program into individual tasks and distributes them

across many workers. Workers receive tasks from the controller that invoke simulation

library functions. Workers are unaware that they are part of a distributed computa-

tion and run seemingly stand-alone simulations. Nimbus automatically updates state

shared between these sub-simulations, stitching them together into a single larger one.

To support an existing simulation library, a library developer writes a small number

of adapters that translate between the library calls and Nimbus’s APIs.

To run a large-scale distributed simulation while providing a sequential execution

model to the programmer, we propose 4 layers of data abstraction for Nimbus. In
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the top layer, the driver executes simulation functions over geometric data objects,

consisting of a simulation variable over a bounding box. To efficiently handle ghost

regions and other shared subregions, the second layer subdivides the domain into

disjoint logical objects. Logical objects present an abstraction of a large, shared

memory to the driver program, allowing it to easily analyze and encode parallelism

and data dependencies independently of how the simulation is distributed. Physical

objects are actual data objects on compute nodes and are the unit of transfer between

nodes. Each logical object can have multiple physical instances, residing on multiple

nodes. The controller translates the logical commands received from the driver into

physical commands for compute nodes. The logical/physical separation allows the

controller to abstract away distribution, load balancing, and fault tolerance from

the driver program. Finally, application objects are in the format and layout that

the simulation library expects. Application objects are typically composed of many

physical objects, as they include central as well as ghost regions. Nimbus detects

inconsistencies between application objects, automatically updating them locally or

over the network when needed.

7.1 Graphical Simulations

Graphical simulations use different data models and algorithms than what available

cloud frameworks provide. This section gives an overview of the principal methods

and algorithms used in graphical simulations, and explains the challenges of distribut-

ing these computations over multiple nodes.

As a concrete example of a graphical simulation, we focus on PhysBAM [51],

an open source physics based software package for fluid and rigid body simulations.

Movie studios such as ILM and Pixar use PhysBAM in production films, and the

developers have won two Academy Awards for its contributions to special effects [20].

PhysBAM can simulate a huge range of phenomena, but in the rest of this chapter,

we focus on a water simulation. Water simulation is a canonical example, as it is

extremely difficult and employs methods that are required for other fluid simulations

such as smoke and fire.
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7.1.1 Fluid Models and Simulation Algorithms

There are two basic ways to computationally represent a fluid: a grid or particles.

A grid divides simulated volume into cells. Per-cell state describes the state of the

simulation, such as whether it contains fluid, pressure, and velocity. The second

approach is to represent the fluid as a set of particles, each of which has its own

(x, y, z) coordinates, velocity, and size. Grids and particles have different strengths

and weaknesses. For example, a grid smooths out small ripples but does not model

splashes well, while particles have difficulty representing fixed boundaries such as the

edge of a glass.

The particle-levelset method [52], pioneered by PhysBAM, combines particle and

grid representations and is why movie and special effect studios can simulate water,

smoke, and fire today. The key insight is that the most important visual feature is

the surface of the fluid. The particle level-set method uses a coarse grid, augmented

with dense particles only on the surface. Since the number of particles increases with

the square (surface), not cube (volume), of the grid size, it remains a small fraction

of the simulation state. Combining these two methods, however makes simulations

much more complex, as the grids and particles interact in subtle and interesting ways.

For example, particles that leave the surface become drops in a splash, and must be

correctly merged back with the water mass when they hit the surface again. Readers

interested in a more complete description of the complexities can read the seminal

book on the topic by Bridson [38].

A simulation is a loop: each iteration steps time forward. The length of the time

step is determined by fluid velocity and grid resolution, so that fluid does not seem to

leap through space. When time passes a frame boundary, the simulation outputs the

visual state of the simulation for later rendering. An iteration has 22 distinct compu-

tational steps, which can be divided into three major categories: updating grid cells,

updating particles, and solving a set of linear equations that enforce physical laws on

the water (e.g., it does not compress or disappear). Solving the linear equations uses

a sub-loop within the main loop. In a typical 2563 water simulation, there are on

average 20 main loop iterations per frame (24fps means 42ms/frame, the main loop

time step is 2.1ms) and 100 iterations of the inner solver loop.
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ghost cells 

Node 1 Node 2 

Figure 7.2: A 1D row of water represented in a grid. When partitioned across two
processes, the two processes must exchange ghost cells of state so they can perform
computations locally.

7.1.2 Current Distributed Simulations

Running a simulation across multiple nodes requires partitioning the simulation ge-

ometry across them. The basic challenge is that partitions are not independent. The

state of water at any cell is dependent on its neighboring cells, some of which may

be on a different node. Furthermore, solving the linear equations involves global

operations.

Partitions can be distributed while minimizing data sharing with ghost cells. Con-

sider a simple 1D simulation of a pipe with water, shown in Figure 7.2. Each partition

is divided into five parts per axis: a large, central region that only the local compu-

tations need, two thin regions of ghost cells that are sent to neighbors, and two thin

regions of ghost cells that are received from neighbors. Figure 7.3 shows a partition in

a 1D and a 2D grid. For a 3D simulation, a partition consists of 125 separate regions

(53). Each variable is partitioned in this manner, resulting in over 29 thousand data

objects for 16 partitions, in a typical simulation with 21 different variables. In addi-

tion to computing on particles and grid cells, simulations also need to perform global

reductions. For example, to compute the time step, or the residual of the linear solve,

the simulation takes the maximum value across all of the partitions.

When a computational step (e.g., reseeding particles) completes, that node needs

to send the updates it made to local ghost regions and receive updates for remote

ghost regions. PhysBAM does this in lockstep: each worker process completes its

computation, sends its results, then blocks on receiving results from neighbors. This
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Figure 7.3: Ghost cell configurations in simulation grids. The local state on a node
consists of 3d objects, where d is the dimensionality of the grid, while the combined
local and remote state a node must use consists of 5d objects. A 3D grid is not shown
for visual simplicity: per-node state is 27 objects and the total state is 125 objects.

approach tightly couples the control flow of the program with its state exchange.

Furthermore, the partitions are set up statically at compile time and cannot move.

If one node fails, the entire simulation fails. The simulation can run only as fast as

the slowest node in the cluster, so stragglers are a major concern.

7.2 Simulation Data Abstraction in Nimbus

Nimbus provides a powerful data model to hide the complexities of distributed exe-

cution from simulation libraries, written by library developers, as well as a simulation

main loop, written by a simulation author. A simulation main loop operates on sim-

ulation state as a volume, applying functions over bounding boxes. This provides

a simple geometric data abstraction to a simulation author. The simulation library

continues to use its own application data types and representations.

To translate from geometry in the driver program to application data in the simu-

lation library, Nimbus uses two intermediate representations. The first, logical objects,

disjointly subdivide the simulation domain into smaller bounding boxes that precisely

define how data is accessed and shared. Logical objects allow Nimbus to analyze a
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B	A	 C	 D	

Ghost	Regions	
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Geometric	
(driver)	

Logical	
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(library)	
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Write	

Write	
Read	

Data	Type	

Figure 7.4: The Nimbus data model has four abstractions: geometric, logical, phys-
ical, and application. This example shows a 1D advection stencil to two partitions
on two different nodes. The geometric view sees the complete simulation domain and
applies the stencil to the two partitions. This defines 4 logical objects, which map to
6 physical objects on the two nodes. Nimbus assembles these disjoint physical objects
into contiguous application objects before invoking simulation library functions.

simulation’s execution in an abstract representation that is independent of its dis-

tribution; it uses these logical objects to determine which operations can be run in

parallel and which must be ordered.

The second intermediate representation, physical objects, describes exactly how

data is distributed across the system. Every logical object has one or more associated

physical objects. In Figure 7.4 the central regions (objects A and D) each have a

single physical instance, while the ghost regions (B and C) each have two physical

instances, one on each node. Physical objects allow Nimbus to explicitly manage data

placement and copies. Nimbus automatically generates and maintains application

objects from their constituent physical objects. The rest of this section explains

these four abstractions in greater detail. Section 7.3 describes how Nimbus uses each

one and translates between them.
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7.2.1 Geometric View

A simulation declares a variable as a data type over the simulation domain with a

geometric partitioning and a ghost cell width. The simulation library defines the set

of available types, such as floating point vectors, particles, or scalars. The simulation

loop is a linear sequence of simulation library calls, such as advecting particles or

calculating boundary conditions in projection. Each library call specifies its data

reads and writes by a set of {variable, bounding box} pairs. The 1D stencil in

Figure 7.4 for example, makes two library calls, one on the left bounding boxes and

one on the right bounding boxes:

parallel {

apply(advect, {var, lread_bb}, {var, lwrite_bb});

apply(advect, {var, rread_bb}, {var, rwrite_bb});

}

This provides a simple, intuitive interface for the simulation author.

7.2.2 Logical View

Using the specified partitioning, Nimbus automatically translates each variable into

a set of disjoint logical objects. Logical objects divide the simulation domain into

the largest bounding boxes, which have the same sequence of reads and writes. In

Figure 7.4, there are four logical objects. Object A is read and written by the left

stencil, object B is read and written by the left stencil and read by the right stencil,

object C is read and written by the right stencil and read by the left stencil, and

object D is read and written by the right stencil. Nimbus transforms the two library

calls into:

parallel {

apply(advect, {A, B, C}, {A, B});

apply(advect, {B, C, D}, {C, D});

}
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Logical objects define a read/write order. Each object has a linear sequence of

writes, with any number of parallel reads between a pair of writes. This allows

Nimbus to analyze data dependencies between calls and enforce execution order. For

example, as the two advection calls above are in parallel, Nimbus knows that both

of them read the same data in B and C and they can execute in parallel. However,

the next time this block executes, Nimbus knows that the calls read the output of

the prior invocations, and so cannot run until the prior invocations complete. In

simulation steps where ghost regions have parallel writes (e.g., particle advection),

Nimbus transforms the operation into a linear sequence by creating one temporary

object per writer and reducing them to the result.

Logical objects are independent of how the simulation is distributed. They present

the abstraction of a single large, shared memory. This allows Nimbus to ensure

correctness without considering the complexity of the current state of a particular

execution.

7.2.3 Physical View

Each logical object has one or more associated physical objects. Physical objects are

an actual simulation state, stored in memory on specific nodes: they define how data

is distributed. Figure 7.4 shows how, when distributed across two nodes, the 4 logical

objects map to 6 physical objects, 3 on each node ({1,2,3} and {4,5,6}). The logical

library calls above are translated into these physical library calls:

apply(advect, {1, 2, 3}, {1, 2});

apply(advect, {4, 5, 6}, {5, 6});

Nimbus tracks the state of a physical object with a version number. The version

is determined by the write lineage in the main loop. When it completes, a library call

that writes to a logical object increments the version for the object. All subsequent

calls use this version as input. Unlike the logical view of objects, which maintain

the abstraction of a sequential execution of parallel operators, the physical view de-

scribes their actual state as the execution progresses. Physical objects are stored
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as contiguous blocks of memory, optimized for network transfer while minimizing

fragmentation.

7.2.4 Application View

Simulation computations are written over contiguous application objects for each par-

tition. An application object over a partition holds data corresponding to underlying

system objects from its partition and ghost regions from neighboring partitions. Ap-

plication objects have the types and formats of the simulation library. For example,

a PhysBAM application object can refer to scalar or vector arrays, or particles stored

as linked lists of particle buckets.

Nimbus assembles application objects by interleaving data from physical objects.

Nimbus uses the geometry metadata of the physical objects to interleave them cor-

rectly. Simulation library functions over these application objects can then be used

directly, without rewriting the code to use a different data model. Figure 7.4 shows

how the two nodes each assemble a contiguous application-level object out of 3 disjoint

physical objects. Both nodes execute

advect(sim);

As the call above shows, the simulation library executing on the node is unaware

that its application object can be modified by other threads, cores, or nodes. Instead,

when a library routine completes, Nimbus automatically updates underlying physical

objects, stitching together the seemingly independent simulations. For example, the

task writing to logical object 1 will need the writes to object 5 the next time it runs.

Similarly, the task writing to logical object 6 will need the writes to 2. Nimbus,

ensures that 5 is copied to 3 and 2 is copied to 4 before the next execution.

7.3 Translation Among Data Abstractions

Nimbus translates between geometric, logical, physical, and application views of the

data using the five architecture components shown in Figure 7.5. A driver program
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describes the main simulation loop in the geometric view. The launcher specifies the

logical tasks that each operate on a subset of the simulation domain, defined by log-

ical objects. The launcher sends these logical tasks to a controller, which binds the

logical objects to physical objects, computes dependencies, and sends task execution

commands to workers. The manager running on a worker receives task execution

commands, schedules them based on their dependencies, and invokes simulation li-

brary code. The translator on workers assembles the disjoint physical objects into

application objects and keeps the both views consistent with a write-back cache.

7.3.1 Launcher

The initialization phase of the driver program specifies the simulation variables, ge-

ometric domain, and a partitioning configuration. Nimbus uses this information to

generate the set of logical objects. Using logical objects separates data declaration

from instantiation, placement, and layout.

Driver program also specifies the simulation operations over partitions and whether

each variable they access is needed read-only or read/write. They also specify the ge-

ometric domain of access. The geometric domain defines how the operation accesses

ghost values. Reverse semi-Lagrangian and Eulerian operations read ghost regions,

while Lagrangian operations write ghost regions.

The launcher expands operations in the driver program into waves of tasks, as-

signing one task to each partition’s geometric domain. Each task has a read set of

the logical objects it reads and a write set of the logical objects it writes. To compute

these sets, the launcher looks up the logical objects associated with each partition. It

relaxes the sequential order of the driver program by computing data dependencies

between tasks and adding a before set to each logical task, which specifies what tasks

must complete before this task can safely run. The before set is calculated from read

and write sets, enforcing that every task sees the most recent write in the driver’s

sequential order. The before sets define the logical task graph, a DAG which encodes

the simulation’s parallelism.
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For large, distributed simulations with hundreds of partitions and millions of log-

ical objects, computing and sending logical tasks can become a bottleneck. The

launcher therefore caches the tasks it generates in controller templates; since simu-

lations typically involve iterative loops with regular access patterns, they have both

regular control flow and data flow. Cache misses only occur the first time a control

path executes (e.g., the first iteration, the first time a frame is written to disk, etc.).

The controller also caches logical tasks; a cache hit allows the launcher to send tens

of thousands of tasks to the controller with a single, small message.

7.3.2 Controller

The controller takes the logical parallel program specified by the launcher and dis-

tributes it across computation nodes. It maintains a context for each logical task,

which specifies the version number of each logical object. A context is computed by

assigning, to each logical object, the maximum version of the contexts of all tasks in

the before set. A task that writes to a logical object increments the version number;

this newer version propagates to tasks that have it in their before set.

The controller instantiates physical instances of logical data at computing nodes.

A physical instance is a contiguous block of memory that encodes the variable over

a domain. Each instance has a version number. The controller takes task graph

it receives from the launcher and transforms it into a physical task graph, which

contains execution commands that invoke simulation library functions on specific

nodes. Vertices of the physical task graph, like the logical task graph, have a read

set, write set, and before set. The read set and write set are physical objects, however.

For iterative applications controller memoizes this translation in worker templates.

When deciding how many physical instances to create, the controller trades off

between memory footprint and parallelism with a simple heuristic. It makes copies

of ghost regions but keeps a single instance of any central region. For the uniform

partitioning of 2563 simulation in Figure 7.1, for example, a 3-wide ghost region has

9-10,092 cells, while a central region has 195,112 cells.
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7.3.3 Translator

The manager receives tasks from the controller and manages three task queues:

blocked (on an incomplete member of the before set), ready, and running. It main-

tains a subset of the physical task graph, consisting of the tasks received from the

controller. When a task completes, the manager removes it from all before sets; if

this makes a before set empty, the task transitions to the ready queue. The man-

ager maintains a thread pool equal to the number of available cores. When a task

completes, it takes the next task of the ready queue and runs it. The ready queue

uses two priorities, with each priority having a FIFO order. Copy tasks have higher

priority. This starts asynchronous network transfers as early as possible, interleaving

communication and computation.

Before the manager executes a simulation library function, it invokes the translator

to generate the appropriate application objects. If there is already an application

object whose data has the correct versions, the translator returns immediately. If

there are portions of the object that are out of data (e.g., a ghost region written to

by another node), it fills into the application object the content of the physical object

specified in the task.

To prevent unnecessary copies for data that is only used locally, and to remove

the need for two copies of central regions, the translator uses a write-back strategy.

If a task writes to an application object, the translator does not immediately write

out the result to the corresponding physical objects. Instead, it waits until a copy

task reads the physical object, at which point it writes the result out to the physical

object before the transfer starts. The translator frees the backing memory of physical

objects that are out of date with their application object. Because central regions

are only transferred when Nimbus load balances between compute nodes, there is

only one copy of their data. This allows Nimbus to maintain both the system and

application views with only a small (< 10%) memory overhead.
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1 class ScalarArray: public AppVar {
2 PhysBAMScalarArray *data ();
3 void Read(DataArray objects , BBox box);
4 void Write(DataArray objects , BBox box);
5 // Internal data members
6 Region bounding_box;
7 PhysBAMScalarArray *data;
8 };

Listing 7.1: Type definition for a float array application object.

7.4 Writing Simulations in Nimbus

Writing a simulation in Nimbus has two parts. First, a simulation library developer

writes adapters that allow Nimbus to properly translate between the application and

system views and compute tasks that encapsulate library function calls. This is a one-

time effort. Second, the simulation author writes the driver program that specifies

the variables and computational steps of a specific simulation.

This section explains Nimbus’s API, using level-set advection as a running exam-

ple. The application simulates multiple frames, and assumes one iteration per frame

for simplicity (PhysBAM dynamically selects a dt inversely proportional to the max-

imum velocity in order to maintain the CFL condition). It explains both the APIs

used for adapters as well as a simulation driver.

7.4.1 Simulation Types (Library Developer)

For Nimbus to translate between the application and system views, a simulation

library developer has to write an adapter for the translator to convert them. This

adapter is a class that holds the underlying application data. Listing 7.1 illustrates

this API for a scalar array in PhysBAM (e.g., the signed distance). The Read method

reads out of the application object, translating it into physical objects. The box

parameter specifies a bounding box subset of the application object to copy. Each

element of objects also has a bounding box; the data copied is the intersection of the

application object bounding box, the physical object bounding box, and box. Write
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1 class AdvectLevelset: public ComputeTask {
2 void Execute () {
3 // Retrieve application objects to compute on
4 float& dt = GetAppObject("dt");
5 Vec3fArray& velocity = GetAppObject("velocity");
6 FloatArray& signed_distance =
7 GetAppObject("signed_distance");
8 // Call into the PhysBAM library to run advection
9 PhysBAMAdvectLevelset(velocity , dt, signed_distance);

10 }
11 };

Listing 7.2: Compute task for advecting levelset calls into PhysBAM library.

copies from physical objects into the application object.

7.4.2 Compute Tasks (Library Developer)

Compute tasks encapsulate library function calls. They are responsible for setting any

global variables or configuration that the simulation library expects. They also fetch

the application objects from the translator that the library function needs. Listing 7.2

shows simplified code for the AdvectLevelset compute task. The compute task reads

velocity and signed distance over its partition and ghost regions from neighboring

partitions, advects signed distance with a call to PhysBAMAdvectLevelset, and

writes to signed distance in its partition.

7.4.3 Control Tasks (Simulation Author)

The driver program has three parts, shown in Listings 7.3–7.5. The first part (List-

ing 7.3) defines the parameters of the simulation, including the geometric domain,

partitioning, and ghost cell widths. This initialization is the one point in the pro-

gram when a simulation author must consider how to distribute the simulation. Unlike

HPC simulations, which tend to perform a uniform computation over data, graphical

simulations can have highly varying computations. For example, particle level-set wa-

ter simulations perform far more computations on water cells than air cells, and water
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1 // Define simulation domain
2 BondingBox sim_region = {{0 ,0 ,0} ,{256 ,256 ,256}};
3 // Partition the domain along three axes
4 Partitioning partitioning = {2,2,1};
5 // The width of the ghost region
6 int ghost_width = 2;
7 // A center region with ghost width 0
8 Region center ({sim_region , partitioning , 0});
9 // Outer region includes center and ghost regions

10 Region center_plus_ghost(
11 {sim_region , partitioning , ghost_width });

Listing 7.3: Example initialization for a particle level-set simulation over of a 2563

domain partitioned along the X and Y axes.

1 // Entry point for a simulation
2 class Main: public ControlTask {
3 void Execute () {
4 CreateData("signed_distance", FloatArray , sim_region ,
5 ghost_width , partitioning);
6 CreateData("velocity", Vec3fArray , sim_region ,
7 ghost_width , partitioning);
8 // Create more objects and launch Loop task
9 }

10 };

Listing 7.4: Main task for example particle level-set simulation.

cells on the interface are more computationally intensive than those deep within the

volume. As a result, the optimal partitioning depends not only on the type of simu-

lation, but also its initial conditions, and so this is best controlled by the simulation

author.

The driver program is written as a control task. Control tasks do not directly

invoke simulation functions; instead, they launch other compute and control tasks.

A special control task, Main (Listing 7.4), is the entry point for simulation. Main

defines the simulation variables. These variable definitions create logical objects at

the controller. The controller does not create physical objects on compute nodes until

it sends tasks to read or write them. This lazy instantiation allows the controller to
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1 // A control task to loop until target_frame
2 class Loop: public ControlTask {
3 void Execute () {
4 // Spawn parallel AdvectLevelset tasks
5 LaunchTaskOverAllPartitions(
6 AdvectLevelset ,
7 {{"signed_distance", center_plus_ghost},
8 {"velocity", center_plus_ghost }}, // read outer
9 {{"signed_distance", center}}, // write center

10 {}});
11 // Spawn other tasks to advect velocity , save data
12 // Spawn next iteration if needed
13 if (parameter.current_frame < parameter.target_frame)
14 LaunchTask(
15 Loop , {}, {}
16 { .current_frame = parameter.current_frame + 1,
17 .target_frame = parameter.target_frame });
18 }
19 };

Listing 7.5: Loop task for particle level-set simulation.

distribute data only after it has a full picture of task access patterns on data objects.

Main, after it launches tasks to initialize the simulation, it launches a Loop

task, which corresponds to the outermost simulation loop. This task launches com-

pute tasks AdvectLevelset and AdvectVelocity (Listing 7.5) to compute the next

values of signed distance and velocity. It uses parameters current frame and

target frame to determine the end of a frame. If there are more frames to simulate,

it launches another Loop control task.

When launching compute tasks, a control task must specify the data that the com-

pute task reads and writes. For instance, the Loop task specifies read and write sets

for AdvectLevelset on lines 5 to 10. It does this by specifying the variables and the

partitioning to use for reading and writing – an AdvectLevelset task over a partition

writes to signed distance only over the same partition, by specifying center as the

partition to write, but reads signed distance and velocity from ghost regions over

neighboring partitions. Nimbus automatically infers write after read dependencies

(e.g., from AdvectLevelset to AdvectVelocity), and read after write dependencies
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(from AdvectVelocity to AdvectLevelset). Based on these dependencies, it auto-

matically inserts the necessary copy tasks and adds them to before sets, enforcing the

correct execution order.

7.5 Evaluation

This section presents the results of porting and running PhysBAM fluid simula-

tions [51] under Nimbus. The performance of the system is compared against hand-

tuned distributed implementation of the simulation with MPI [113]. This section also

explores the feasibility of porting graphical simulations to Nimbus.

Figure 7.6 shows simulated frames of a particle-levelset water simulation from

PhysBAM library. The top image depicts the 1283 cell simulation frames running

without Nimbus serially. The bottom image shows the 2563 cell simulation frames

running with Nimbus, distributes over 64 cores. The 2563 simulation takes 268 min-

utes under Nimbus faster than it takes to run the smaller simulation serially. Without

Nimbus the 2563 simulation takes more than two days. The speedup finishes bigger

simulations in reasonable time, which brings noticeable difference in details.

7.5.1 Scalability and Speedup

Nimbus speeds up simulations by scaling out over multiple nodes. Figure 7.7 shows the

results of running a 2563-cell simulation under Nimbus with three different settings:

1) serialized version over a single core, 2) distributed over 8 cores of a single node, and

3) distributed over a cluster of 8 nodes, each with 8 cores (64 cores in total). For each

setting the average length of the main iteration loop is reported. Once an application

is ported to Nimbus, the runtime automatically parallelizes the simulation depending

on the available resources.

Each simulation iteration is composed of an explicit solver, and an iterative pre-

conditioned conjugate gradient (PCG) implicit solver. While the explicit solver scales

almost linearly with more cores, the iterative implicit solver scales sublinearly. This
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(a) 1283 cells, with Nimbus: 43 minutes, without Nimbus: 172 minutes

(b) 2563 cells, with Nimbus: 268 minutes, without Nimbus >48 hours

Figure 7.6: Particle level-set water simulations with and without Nimbus. The top
simulation has 1283 cells, runs on a single-core and takes 172 minutes to simulate 30
frames. The bottom simulation uses Nimbus to automatically distribute this single-
core simulation over 8 nodes (64 cores) in Amazon’s EC2, simulating with greater
detail: 30 frames of a 2563 cell simulation takes 268 minutes. Without Nimbus the
2563 cell simulation takes more than two days. Running the 1283 simulation in Nimbus
takes only 43 minutes.



CHAPTER 7. GRAPHICAL SIMULATIONS IN NIMBUS 115

(1, 1) (1, 8) (8, 64)
(#workers, #cores)

0

20

40

60

It
e
ra

ti
o
n
 t

im
e
 (

s) 51.03

16.15

6.12

Implicit Solver

Explicit Solver

Figure 7.7: Running 2563-cell PhysBAM water simulation under Nimbus with three
different cluster settings. For each setting the length of main iteration is reported
(averaged over 1200 iterations). Nimbus automatically parallelizes the simulation
over more resources.

# partitions iteration time # iterations total time

1 111 (ms) 60 6.67 (s)
8 46 (ms) 82 3.79 (s)
64 25 (ms) 98 2.48 (s)

Table 7.1: Performance of the iterative PCG implicit solver for various parallelism
settings. While increasing partitions speeds up each iteration of the solver, the pre-
conditions become less effective resulting in more iterations before convergence.

is because locally computed preconditions become less effective with increasing parti-

tions, resulting in more iterations for the implicit solver. Table 7.1 shows the average

number of iterations and the time it takes for the solver in different settings. Overall,

parallelism over 64 cores results in a 8.3x speedup compared to the serialized version.

Comparison against MPI

Currently, the common approach in distributing the graphical simulations is through

MPI [113]. Application writers leverage the MPI interface to implement the data

exchange required for distributing the application state. The control and data ex-

change logic is interleaved within the application logic and statically compiled. This

approach requires intensive coding effort by the developers. However, the application
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Figure 7.8: Execution time of a PhysBAM water simulation using MPI and Nimbus.
For the standard simulation size used today (5123), Nimbus imposes an overhead of
only 3%. For the largest PhysBAM water simulation ever run (10243), the overhead
is 15%. The overhead Nimbus imposes is entirely from a central controller; the
computation and communication time matches the MPI performance closely.

specific implementation enables hand-tuned optimizations in favor of performance.

The statically compiled control flow induces minimum overhead during the runtime,

although it is not robust against failure and load imbalance.

Nimbus, on the other hand, provides an application independent interface. The

control plane is dynamically planned out during the runtime. While this approach

removes the distribution burden from the developer’s shoulders and is robust against

the stragglers and failures, the overhead of the dynamic runtime could be a concern.

To this end we compare the runtime overhead of Nimbus against the base MPI im-

plementation. As we will see, execution templates reduce the runtime overhead of

the controller significantly.

We ran two 3D PhysBAM water simulations, one with 5123 (64-128GB of RAM)

cells run on 8 workers, and one with 10243 cells (512GB-1TB of RAM) run on 64

workers. 5123 is the common size run today because it can fit in memory on high-end

simulation nodes, 10243 is the same size as the largest PhysBAM simulation that

has ever been run. While the majority of execution time is spent in tasks that take
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Figure 7.9: Iteration time of PhysBAM water simulation using MPI, and Nimbus in
three scenarios: 1) without any template, 2) with only controller templates, and 3)
with both controller and worker templates. Templates help Nimbus scale; without
them Nimbus controller shows excessive overhead of 40–520% when running on 64–512
cores. The MPI performance is shows for comparison, as well.

60-70ms, the median task length is 13ms, 10% of tasks are <3ms and some tasks are

as short as 100µs.

Figure 7.8 shows a detailed breakdown of the MPI and Nimbus implementation

execution times. Their compute and data exchange (network) times are equivalent:

the slight variations are due to threading differences in the two runtimes. Compared

to the MPI implementation, all of Nimbus’ overhead comes directly from having a

centralized scheduler. Because the MPI nodes run in lock step with one another,

their current positions in the program encode the overall program control flow. In

contrast, Nimbus’ scheduler manages the control flow across workers. When an MPI

worker fails, the application crashes and must be carefully restarted manually.

7.5.2 Benefit of Execution Templates

Without execution template, Nimbus cannot deliver the performance numbers close

to MPI as the control plane becomes a bottleneck. Figure 7.9 shows the results of

running Nimbus under three different setting: 1) without any templates, 2) with only
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controller template, and 3) with both controller and worker template. For a 5123

water simulation, a central controller without templates imposes a 40% slowdown.

Using templates, the 5123 simulation can run within 3% of the MPI implementation.

For the larger simulation, the aggregate task rate is 8 times higher and so overwhelms

the scheduler; without templates, it take 520% longer than MPI. With templates, it

runs within 15% of the MPI implementation.

7.5.3 Nimbus in Practice

For running the water simulation from PhysBAM library we had to implement the

adapters as explained in Section 7.4.1 in less than 1,500 semicolons of C++ code.

Note that this is a fairly complex particle-levelset simulation, including three main

data types for face arrays, scalar arrays, and particles. This is a one time cost, and

other simulations (e.g. smoke) could reuse the adaptors.

To monitor the code development for Nimbus in practice, we had one of the

undergraduate summer interns import a smoke simulation from PhysBAM library

into Nimbus. The adaptor code was directly reusable from the water simulation.

Writing the driver program took less than a month for the student, who had no prior

knowledge of graphics or simulation methods. In fact, the majority of the time was

spent in understanding the original code and determining the required tasks. We

expect that for developers with complete understanding of the methods, porting the

tasks in to the Nimbus’s API would be fairly straight forward.

Figure 7.10 shows the results of running the smoke simulation with and without

Nimbus for 1283-cell and 2563-cell simulations. Nimbus enables bigger simulations

with finer details in a reasonable time, while without Nimbus it would take more

than a day to simulate the 2563-cell simulation without parallelism.

7.5.4 Load Balancing and Fault Tolerance

Nimbus’s controller monitors the nodes and reacts to stragglers and failures in the

cluster. Figure 7.11 shows two different scenarios for running a 2563-cell water sim-

ulation over a cluster of 8 nodes. In the first scenario, the load balancing and fault
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(a) 1283 cells, with Nimbus 28 minutes, without Nimbus: 94 minutes

(b) 2563 cells, with Nimbus: 132 minutes, without Nimbus >30 hours

Figure 7.10: Smoke simulations with and without Nimbus. The top simulation has
1283 cells, runs on a single-core and takes 94 minutes to simulate 70 frames. The
bottom simulation uses Nimbus to automatically distribute this single-core simulation
over 8 nodes (64 cores) in Amazon’s EC2, simulating with greater detail: 70 frames
of a 2563 cell simulation takes 132 minutes. Without Nimbus the 2563 cell simulation
takes more than a day. Running the 1283 simulation in Nimbus takes only 28 minutes.
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Figure 7.11: Running a 2563-cell PhysBAM water simulation in a cluster of 8 Nimbus
nodes in two cases: load balancing and fault tolerance enabled and disabled. Nimbus
reacts to the straggling node by rebalancing the load and rewinds from latest check-
point upon failure. Without these features the progress speed is bound by the speed
of the straggler and any fault halts the simulation.

tolerance is enabled. Nimbus automatically creates checkpoints every 30 minutes and

reacts to any load imbalance among the nodes by rebalancing the load dynamically.

In the second scenario, both features are disabled; this mimics the more traditional

approach in parallelizing such workloads (e.g. using MPI), where the control plane

is statically compiled within the application logic. This removes any scheduling flex-

ibility – resources are allocated once in the beginning of the simulation.

At the beginning of the simulation, all nodes are running at the full speed, until

after 10 minutes when one of the nodes starts straggling. Straggling is a common

and well-studied phenomenon in the cloud setting and it could happen for variety

of reasons from data skew and networking congestion, to over-subscription of vir-

tual machines [29] [130]. Here, we mimicked the straggler by launching CPU-bound

background processes on the node to create contention for compute resources. With

load balancing features of the Nimbus enabled, the controller rebalances the load to

get around the straggling node, while in the other scenario the straggler limits the

progress speed. Any solution that requires the static scheduling and partitioning

decisions (e.g MPI implementations) would suffer from the same problem.
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After about 35 minutes, one node fails. In this case, since the in-memory state

is lost, the progress is halted. With automatic checkpointing enabled, Nimbus suc-

cessfully rewinds back to a previous state and resumes computation with remaining

available resources. Currently, the common approach in dealing with failures is hu-

man intervention to evaluate the situation and manually relaunch a simulation from

a checkpoint with new parameters. Nimbus does this automatically and can also

adapt the checkpoint creation rate dynamically. From our experience, failures such

as memory corruptions in application and disk I/O failures are quite common for long

running applications, and this is exacerbated in a distributed setting at higher scales.



Chapter 8

Conclusion and Discussion

This dissertation argues that the control plane of data analytics frameworks has

become an emerging bottleneck. It also introduces a new abstraction, execution tem-

plates, for the control plane that supports orders of magnitude higher task through-

puts while keeping the dynamic scheduling. This enables cloud computing frameworks

to scale out for data analytics applications and also tackle traditional HPC applica-

tions. This section summarizes the dissertation’s contributions, and provides a dis-

cussion on the limitations of execution templates and their implications. It concludes

with our view on the design trends in cloud computing frameworks.

8.1 Contributions

In Chapter 1, this dissertation claimed

Execution templates realize orders of magnitude higher task through-

put than centralized frameworks, without sacrificing fine-grained,

dynamic scheduling. By caching control plane decisions in parametris-

able blocks, an execution template can dynamically schedule high

performance computations. Execution templates are general enough

to not only support traditional data analytics, but also complex

applications with nested loops and data dependent branches that

results in nondeterministic control flow.

122
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This claim has been supported throughout this dissertation by demonstrating

how control plane of cloud frameworks has become a bottleneck, introducing the

execution template abstraction and their mechanisms for high task throughput and

dynamic scheduling, describing the design and implementation of Nimbus framework

that embeds execution templates, and evaluating execution template not only for

traditional data analytics benchmarks, but also for graphical simulations ported into

a cloud framework for the first time.

8.1.1 Cloud Control Plane Analysis

Chapter 3 went through in great details why traditional data analytics could run

orders of magnitude faster if implemented in lower level languages. Shorter tasks im-

plies higher task throughput at the control plane. Current frameworks either support

high task throughput or allow dynamic, flexible scheduling, but not both.

8.1.2 Execution Templates

Execution templates enable a framework to provide high task throughput and dy-

namic scheduling simultaneously. By caching task graphs on the controller and work-

ers, execution templates are able to schedule half a million tasks per second. At the

same time, controllers can cheaply edit templates in response to scheduling changes

or dynamic control flow.

8.1.3 Nimbus

Chapter 5 laid out the design and implementation of Nimbus, an analytics frame-

works that supports high performance computations. Nimbus design is motivated by

execution template requirements such that embedding execution templates in Nimbus

requires almost no changes in the driver program. Also, Nimbus provides novel opti-

mization for execution templates deployment to benefit the most from their instanti-

ation and patching mechanisms. Chapter 6 evaluates the performance and flexibility

of execution templates under Nimbus, and show Nimbus can reach the performance of
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frameworks with distributed frameworks, while keeping reactive, fine-grained schedul-

ing of frameworks with centralized control plane.

8.1.4 Graphical Simulations in Nimbus

Execution templates are not bound by simple data flows or static program flow con-

trol. To show the generality of execution templates, Chapter 7 introduced the novel

data abstraction of Nimbus that enables automatic distribution of graphical simula-

tions in the cloud. Simulation workloads are traditionally considered only in the HPC

domain and it was for the first time that they were evaluated in a cloud frameworks.

The evaluations show Nimbus with execution template matches the performance of

hand-tuned MPI implementation within 15%, while providing automatic load balanc-

ing and fault tolerance that is normally left to be dealt with by application devel-

opers manually under MPI. Execution templates allow Nimbus controller to sustain

the high tasks throughput requirements of graphical simulations. Without execution

templates, Nimbus would run 6x slower, as the controller becomes a bottleneck.

8.2 Discussion

Execution templates described in this dissertation introduce a strong abstraction for

the control plane. However, they have limitations, as well as certain requirements

when incorporated in available systems.

8.2.1 Execution Templates in Other Frameworks

Execution templates are a general control plane abstraction. However, the require-

ments listed in Section 4.1.1 are simpler to incorporate in some systems than others.

We design Nimbus such that execution templates are readily deployable. Embedding

execution templates in other frameworks requires more extensive changes.

Incorporating execution templates into Spark [128] would require three significant

changes to its data model and execution model, particularly its lazy evaluation and

scheduling. First, it would need to support mutable data objects. When data is
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immutable, each execution of a template is on new data object identifiers. Second,

the Spark controller needs to be able to proactively push updates to each worker’s

block manager. In other words, workers need to be able to exchange data directly.

Otherwise, every access of a new data object requires a lookup at the controller.

Third, in Spark the controller is completely responsible for ensuring tasks run in the

correct order, and so tasks sent to workers do not contain any dependency information.

Adding execution templates would require adding this metadata to tasks as well as

worker control logic. Spark workers need to queue their tasks and ordering metadata.

While these changes are all quite tractable, together they involve a significant change

to Spark’s core execution model.

Naiad’s [94] dataflow graphs can be thought of as an extreme case of execution

templates, in which the flow graph describes a very large, long-running basic block. In

other words, the entire tasks graph is a single basic block. Allowing a driver to store

multiple dataflow graphs, edit them in place at the task granularity, and dynamically

triggering them (with validation) would bring the dynamic scheduling benefits to

Naiad.

Same argument holds for TensorFlow [22], although the central master in Ten-

sorFlow makes it easier to implement the execution templates mechanisms upon the

available code base. Additionally, breaking up the driver program at the boundary

of basic block would allow TensorFlow to keep the data dependent branches imple-

mented through its multiplexer interfaces.

8.2.2 Limitations of Execution Templates

Execution templates assume that a driver program repeats the same basic blocks

many times. For this reason, they are not valuable for short-lived jobs. Streaming

computations, however, can benefit from standing templates that a driver periodically

triggers. Execution templates also assume that a job’s schedule, while dynamic, is

mostly stable: Figure 6.8 showed that switching between cached schedules induces

significant validation costs. If each iteration requires large edits or new templates,

caching control decisions will not help. This erratic behavior is rare, however, because
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such erratic schedules require large inter-worker data transfers.

8.2.3 Going Forward

A controller template has no understanding of the driver program’s control flow. Since

validation is centralized and unparallelizable, its cost in extremely dynamic control

flows can be significant. Static analysis of the driver program, however, could provide

better hints, similarly to how compilers allocate and manage registers across many

control paths. The boundaries between the driver, controller, and workers, as well as

the relationship between program analysis and runtime algorithms, remain open and

interesting research problems.

8.3 Cloud Computing Design Projection

High performance computing has a long history of handling millions of tasks per

second by completely distributing the control flow in the application. While cloud

systems such as Naiad [94] and TensorFlow [22] have moved in this direction, it is

worth noting that HPC systems have moved in the opposite direction due to the

resulting complexity. When jobs run on tens of thousands of cores in heterogeneous

architectures (CPUs, GPUs, GPGPUs, NUMA), reasoning about their performance

and where execution time goes can be very difficult. As a result, modern HPC frame-

works such as Legion [32] and Charm++ [77] have moved towards a more centralized

model. Both communities have shifted to use techniques much closer to where the

other started; this overshoot suggests that both may retreat to middle ground. Execu-

tion templates provide a valuable compromise between these two regimes by keeping

the driver program as a centralized, sequential point of execution but allowing workers

to schedule at the granularity of basic blocks.
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